249

CATALOGUE OF STARS

JA N. 1, 1892

FROM OBSERVATIONS

COMPILED UNDER THE DIRECTION OF
COLONEL II. R. THUILLIER, C.I.E., R.E., SURVEYOR GENERAL OF INDIA. BY

COLONEL G. STRAHAN, RE., DEPUTY SURVEYOR GENERAL, IN CHARGE OF THE TRIGONOMETRICAL BRANCH OF THE SURVEY OF INDIA.

PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL BRANCH, SURVEY OF INDIA,
B. V. HUGHES.
1893.

CATALOGUE OF STARS

JAN．1， 1892

FROM OBSERVATIONS

BY TIE

great trigonometrical survey of india．

COMPILED UNDER THE DIRECTION OF COLONEL H．R．THUILLIER，C．I．E．，R．E．，SURVEYOR GENERAL OF INDIA． BY

COLONEL G．STRAHAN，R．E．，DEPUTY SURVEYOR GENERAL， IN CHARGE OF THE TRIGONOMETRICAL BRANCH OF THE SURVEY OF INDIA．

> 刃⿻上丨at 辺u!

PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL BRANCH，SURVEY OF INDIA．
B．v．HUGHES．
1893.

Price Two Rupees．

```
+s%

\section*{Р尺円円AC円。}

For the effective prosecution of a geodetic survey，it is indispensable that the latitudes and longe－ tudes of a certain number of the principal stations of the triangulation should be obtained from astronomical observations，independently of their values as computed from the triangulation．The great accumulation of observed zenith distances of stars for latitudes，and of observed transits for longitudes in the geodetic survey of India，gave rise to the conviction that the material thus laboriously collected might be utilized for compiling a star catalogue，a conviction which has resulted in the publication of the accompanying list of star－places for January，1892，with the necessary constants for the reduction of their places to other epochs．

In order that the method by which the latitude and longitude observations were employed in the construction of the catalogue may be understood，a few introductory remarks seem necessary．

To begin with the Right Ascensions．These are purely differential，that is to say they are obtained by measurement of the difference of Right Ascension of the catalogued star and of some adjacent Nautical Almanac star observed with it ；the latter being considered for the purposes of this Catalogue as errorless． For convenience of reference the name of the comparison Nautical Almanac star or stars thus employed is entered in the fifth column of the Catalogue．

In determining differences of longitude in India with the help of the electric telegraph，the method adopted as being the most direct and trustworthy was to record at both stations，by one and the same clock， the times of transit of certain stars at intervals of from one to three minutes，arranged in groups of eight or ten．The clock at the eastern station was employed first，and when two groups of stars had passed，the clock at the western station was similarly used．During the passage of each group the whole apparatus remained in statu quo，excepting only the necessary change in altitude of the transit telescope，so that when all corrections for collimation，level，and azimuth have been made，the interval between the transits of any two stars at either station represents the difference of their right ascensions．Each station furnishes a record of this description．As it is obvious that only approximate star places are required when this method is adopted，B．A．C．stars were freely used；for the differences of longitude depend solely upon the time occupied by a star passing from the meridian of the eastern，to that of the western observer． It was however found convenient for reasons connected with the subsequent computation，which need not be entered into here，to introduce a Nautical Almanac star into each group；the transit observations there－ fore furnish the difference of right ascension between this Nautical Almanac star and every other star in
the group. It has thus most fortunately happened that this practice, which was originally introduced for a totally different purpose, has rendered possible the determination of the Right Aseensions of nearly all the stars used in the longitude observations.

It would be superfluous to enter into any minute details of the instruments employed, especially as they are given at considerable length in Volumes IX, X and XV of the Account of the Operations of the Great Trigonometrical Survey of India, suffice it to say that the transit teleseopes are by Messrs. T. Cooke and Sons of York, their effective aperture is 5 inches, and their focal length slightly over 5 feet. Their diaphragms are wired to carry two horizontal, and twenty-five vertieal, wires in tallies of five eaeh, the mean distance between them being 2.4 seeonds of time, with a double interval between the tallies. The whole number of vertical wires was never used, the ordinary number being eleven or fifteen, equally distributed on either side of the central one. The collimation was adjusted by a pair of eollimators, one to the north and one to the south, and the level by reflection of the system of wires from a mercury trough, with the aid of a Bohnenberger eye-piece. The azimuthal deviation was in almost all eases determined by reference to a pair of cireumpolar stars, one at the upper, and the other at the lower culmination. A zenith distance not exceeding \(24^{\circ}\) south or north was laid down as a limit for the longitude stars. The transits were recorded by elcetricity on a chronograph, in a way whieh calls for no special mention here, and it was found that the probable error of the estimated time of a star passing one wire was about \(0^{s .04}\), and consequently about \(0^{s}\). OI for the whole group of fifteen wires. A full longitude determination consisted generally of six nights' work, on each of which the same groups with some few exceptions were employed.

In forming the Catalogue the times of transit of every star in a group, including the Nautical Almanac comparison star, were first purified from all known sources of error, and henee the difference of the right ascension of eaeh star from that of the comparison star beeame known. The true right ascension of the comparison star at the moment of observation was then computed from the Nautical Almanac data, and hence the true right aseension of every observed star was obtained for that instant.

The place thus found was then corrected by the "Quantities for correcting the places of Stars" given in the Nautical Almanae, to reduce it to January 1 of the year of observation, using the proper motion, for this short interval, as given in the best catalogue available.

It was now quite simple to reduce the place to January 1, 1892 (whieh date is taken for the epoch of the Catalogue) as far as precession and nutation were coneerned, but it beeame a matter of great doubt and difficulty to decide upon the proper motion; for in some cases the intervals between the date of observation and the epoch of the Catalogue, are so considerable, as to make it by no means an unimportant matter what proper motion is used for bringing up the place to the latter date. It was believed that the observations on which this Catalogue was founded were sufficiently aceurate to give a reliable indication of what proper motion a star had been endued with sinee it had been last observed at some standard observatory; and to this end a sort of short history or abstract of its places, as determined from the Greenwich Catalogues of \(1860,1864,1872\) and 1880, was compiled, among which the places found from the longitude observations were inserted in their proper position according to date.

All these positions were then by the applieation of the precession and secular variation brought up to the epoch of January 1, 1892, proper motion being entirely neglected.

An examination of these showed the movements of cach star due to its proper motion for a period of time of from twenty to thirty years, and from a consideration of these a proper motion was deduced whieh scemed to involve the minimum of discrepancy in the results, assuming that the proper motion in right aseension was proportional to the time. There seems to be in some cases evidence of this assumption being unsound,
but the quantities involved are so minute that it would be unsafe to base any theory upon them, and the proper motion assigned in all cascs, and entered in the Catalogue, was such as to best represent the star's position on the supposition of uniform motion in right ascension. The finally reduced right ascension on January 1, 1892, as given in the Catalogue, is the mcan of all the places found from the longitude observations brought up with the proper motion obtained as above.

The formulx employed in computing the annual precession in right ascension and its secular variation are as follows :-

Precession in seconds of time \(=3.0726+\left[0.126083^{8}\right] \sin a \cot\) N.P.D.
Secular variation do. \(\quad=[\overline{2} \cdot 1138] \sin a \cos a \operatorname{cosec}^{2}\) N.P.D. \(+\left[\overline{3} \cdot 9^{8} 78\right] p \cos a \cot\) N.P.D.
\[
+0.00322-[\overline{4} .6338] p
\]

Where \(a\) is the star's right ascension in arc, and N.P.D. the north polar distance, both to the nearest second, and \(p\) in the latter formula is the annual precession in \(\mathbf{R}\). A. The formula for \(p\) is deduced as follows from that given at page 617 of Volume I of Chauvenet's "Manual of Spherical and Practical Astronomy," 2nd edition :-
\[
p=m+n \sin a \cot \text { N.P.D. }
\]
where
\[
\begin{aligned}
m & =4^{\prime \prime \prime} \cdot 0623+0^{\prime \prime} \cdot 0002849 t \\
n & =20^{\prime \prime} \cdot 0607-0^{\prime \prime} \cdot 0000863 t
\end{aligned}
\]
\(t\) being the number of years elapsed since 1800.
Substituting 92 for \(t\) and dividing by 15 to reduce to seconds of time, we obtain
\[
\begin{aligned}
m & =3^{8.0726} \\
\log n & =0.1260838
\end{aligned}
\]

The North Polar Distances were determined from zenith distance observations made with the Astronomical Circles Nos. 1 and 2, Strange's Zenith Sectors Nos. 1 and 2 and in a few with Troughton and Simms' Zenith Telescopc. Detailed descriptions of the first two kinds of instruments will be found in Volume XI of the Account of the Operations of the Great Trigonometrical Survey of India, and it will suffice to say that each of the Astronomical Circles has an effective aperture of 3.46 inches and a focal length of \(53 \cdot 84\) inches and that each of the Zenith Sectors has an cffective aperture of 4 inches and a focal length of \(48 \cdot 5\) inches. The Zenith Telescope is of the usual pattern and has an effective aperture of \(2 \cdot 5\) inches and a focal length of 30 inches.

The general principles on which the North Polar Distances were determined is as follows:the latitude of each station being obtained from observations to a great number of stars, it was presumed that the errors of stars' places cancel in the mean and that the latitude is practically correct. The observations of zenith distances from which the latitude was determined were also accepted so that each observation gave an equation as follows:-
\[
\text { north polar distance }=\text { co-latitude } \pm \text { zenith distance }
\]
the upper and lower signs applying to stars south and north of the zenith respectively. As, however, the Astronomical Circles gave the latitude as determined by north stars different from that as determincd by south stars, the co-latitude as determined by north stars only was used in the above equation when a north star was under consideration and similarly for south stars.


The North Polar Distance was thus obtained for the date of observation at a particular station : the necessary corrections to reduce to January 1 having been already computed, were applied and the mean of the results taken to represent the star's north polar distance on January 1 of a certain year as deduced from observations at a particular station. The same procedure was applied at each station where the star was observed, the results being the north polar distances of the star on January 1 of certain ycars.

The star's places wcre then brought up to January 1, 1892, proper motion being entirely neglected.
Just as in the case of the right ascensions, these places were examined and that value assigned to the proper motion which seemed best to accord with the observations.

The proper motion was then applied and the mean of the results taken as the star's North Polar Distance on Jạnuary l, 1892.

In a few cases when a star was observed with the zenith telescope, the results of the observations are the sum of the north polar distances of that star and of another whose place was found in the English, French or German Nautical Almanac, and taken from there as correct: the star's place was then found by simple subtraction.

The formulæ employed in computing the annual precessions in north polar distance and its sccular variation are as follows:-
\[
\begin{aligned}
& \text { Precession in seconds of arc }=-\left[1 \cdot 302175^{1}\right] \cos a \\
& \text { Secular variation } \ldots . .=[\overline{1} \cdot 1638] p \sin a+[3 \cdot 9360] \cos a .
\end{aligned}
\]

The magnitudes of the stars contained in this catalogue were taken from the Greenwich Catalogues where possible, in all other cases they are copied from the B.A.C.
\(\left.\begin{array}{c}\text { Defra } \text { Dun: }^{\prime} \\ \text { July, } 1893 .\end{array}\right\}\)
G. STRAHAN, Colonel, R.E.,

Dy. Surveyor General,
In charge Trigonometrical Surveys.

\title{
CATALOGUE OF STARS
}

FOR THE EPOCE

JAN. 1, 1892

\section*{FROM OBSERVATIONS}

BY THE

\section*{great trigonometrical survey \\ OF}

INDIA.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & Mean Right Ascension Jan. 1, 1892 & Nautical Almanac
Comparison
Star & \[
\begin{aligned}
& \text { No. of } \\
& \text { Obser- } \\
& \text { obations }
\end{aligned}
\] & \(\underset{\text { Precession }}{\text { Annual }}\) & \(\underset{\text { Vocular }}{\substack{\text { Seriation }}}\) & Proper \\
\hline & & & \({ }_{6}{ }^{\text {m }}\) & & & \(s\) & \(s\) & \\
\hline 1 & 9 Trianguli . \(\gamma\) & \(5^{\circ} 5\) & 21053.602 & \(\xi^{2}\) Ceti & 14 & + \(3 \cdot 5482\) & +0.0293 & \(+0.005\) \\
\hline 2 & 22 Arietis . . \(\theta\) & \(5 \cdot 6\) & \(2126 \cdot 997^{\circ}\) & , & 14 & +3.3292 & +0.0180 & -0.002 \\
\hline 3 & Piazzi II. 6ı & \(6 \cdot 0\) & \(216 \quad 6 \cdot 966\) & " & 14 & + 3.7208 & +0.0381 & -0.009 \\
\hline 4 & 14 Trianguli & \(5 \cdot 3\) & \(22530 \cdot 600\) & " & 14 & + 3.6417 & +0.0316 & . 000 \\
\hline 5 & 26 Persei - . \(\beta\) & Var. & 3 I 8.403 & \(\delta\) Arietis & 12 & \(+3 \cdot 88{ }^{1}\) & +0.0355 & -0.002 \\
\hline 6 & 55 Arietis & 5.5 & \(\begin{array}{llll}3 & 3 & 6.826\end{array}\) & \(\delta\) Arietis & 12 & \(+3.5963\) & +0.0235 & \(-0.003\) \\
\hline 7 & 28 Persei . . \(\omega\) & 4.7 & 3419.010 & " & 12 & \(+3 \cdot 8580\) & +0.0335 & \(-0.003\) \\
\hline 8 & Piazzi III. 5 & \(6 \cdot 0\) & \(3746 \cdot 678\) & " & 12 & + 3.9552 & +0.0370 & +0.007 \\
\hline 9 & Piazzi III. 23. & \(4 \cdot 8\) & 3 II \(58 \cdot 48 \mathrm{I}\) & " & 12 & + 3.7383 & \(+0.0273\) & 000 \\
\hline 10 & Piazzi III. 32. & \(4^{*} 7\) & \(31348 \cdot 184\) & " & 10 & \(+3 \cdot 6194\) & +0.0228 & -0.001 \\
\hline 11 & 64 Arietis & \(5 \cdot 6\) & 31755.885 & - Tauri & 10 & + 3.5324 & +0.0195 & \(+0.004\) \\
\hline 12 & 2 Tauri . . \(\xi\) & \(3 \cdot 8\) & 3 2x 19.026 & " & 6 & + 3.242I & +0.0117 & \(+0.003\) \\
\hline 13 & 5 Tauri . . \(f\) & \(4 \cdot 3\) & \(32454 \cdot 735\) & „ & 18 & + 3.3049 & +0.0130 & +0.008 \\
\hline 14 & Piazzi III. 104 & 6.0 & \(3345 \cdot 974\) & \(\eta\) Tauri and a Tauri & 24 & + 3.8895 & \(+0.0284\) & -0.004 \\
\hline \({ }^{1} 5\) & 40 Persei . . o & \(6 \cdot 0\) & \(3353{ }^{\text {I }}\)-884 & & 22 & \(+3.7906\) & \(+0.0250\) & +0.002 \\
\hline 16 & 38 Persei . . o & \(4^{\circ} \mathrm{O}\) & \(33732 \cdot 65^{6}\) & \(\eta\) Tauri & 18 & +3.7503 & +0.0234 & \(-0.003\) \\
\hline 17 & 19 Tauri & 4.4 & \(33^{8} 46 \cdot 645\) & " & 18 & + 3.5613 & +0.0180 & . 000 \\
\hline 18 & 42 Persei . . \(n\) & \(6 \cdot 0\) & \(34242 \cdot 957\) & " & 8 & + 3.783 x & +0.0235 & -0.004 \\
\hline 19 & Piazzi III. 170 & 5.5 & 34349.241 & " & 32 & +3.5951 & +0.0183 & -0.004 \\
\hline 20 & 44 Persei . - \(\zeta\) & \(3 \cdot 1\) & \(34720 \cdot 54^{1}\) & , & 8 & + 3.7601 & +0.022I & +0.001 \\
\hline 21 & 45 Persei . . \(\epsilon\) & \(3 \cdot 0\) & \(35036 \cdot 279\) & \(\eta\) Tauri & 6 & +4.0101 & \(+0.0287\) & +0.001 \\
\hline 22 & 46 Persei . . \(\xi\) & \(4 \cdot 1\) & \(35^{1} 57 \cdot 345\) & , and A Tauri & 32 & \(+3.8806\) & +0.0246 & -0.002 \\
\hline 23 & 39 Tauri . . \(\mathrm{A}^{8}\) & \(6 \cdot 5\) & \(35^{8} 56 \cdot 55^{8}\) & A Tauri & 20 & + 3.5325 & +0.0153 & +0.011 \\
\hline 24 & 44 Tauri . . \(p\) & \(5 \cdot 6\) & \(4415 \cdot 147\) & " & 20 & + 3.6482 & + 0.0169 & \(-0.003\) \\
\hline 25 & 52 Persei . . f & 4.9 & \(4732 \cdot 201\) & " & 12 & \(+4.0694\) & \(+0.0265\) & -0.004 \\
\hline 26 & 48 Tauri & \(6 \cdot 4\) & \(4 \quad 9 \quad 38 \cdot 3^{86}\) & A Tauri & 6 & +3.3930 & +0.0116 & + 0.008 \\
\hline 27 & 52 Tauri . . \(\phi\) & 5. 1 & \(41342 \cdot 651\) & " & 6 & +3.6842 & \(+0.0164\) & 0.002 \\
\hline 28 & 68 Tauri . . \(\delta^{3}\) & \(4 \cdot 2\) & 41914.37 I & ¢ Tauri & 4 & + \(3.45^{82}\) & +0.0118 & + 0.006 \\
\hline 29 & Piazzi IV. 99. & \(5 \cdot 0\) & 42422.521 & " & 8 & \(+3.4221\) & + 0.0108 & \(-0.003\) \\
\hline 30 & 85 Tauri & \(6 \cdot 0\) & \(42541 \cdot 512\) & " & 18 & \(+3.415 \mathrm{I}\) & +0.0106 & \(+0.003\) \\
\hline 3 x & Piazzi IV. 148 & \(5 \cdot 9\) & \(43434 \cdot 061\) & \(\epsilon\) Tauri and \(\iota\) Aurigæ & 20 & + 3.7459 & +0.0145 & -0.001 \\
\hline 32 & 94 Tauri . . \({ }^{\top}\) & 4.4 & \(43545 \cdot 604\) & ¢ Aurigæ & 10 & + 3.5957 & \(+0.0121\) & -0.007 \\
\hline 33 & Piazzi IV. 169 & \(5 \cdot 3\) & \(438 \cdot 26 \cdot 609\) & " & 6 & \(+3 \cdot 3149\) & +0.0084 & +0.004 \\
\hline 34 & x Aurigx. & 5.2 & \(44238 \cdot 310\) & & 10 & + 4.0334 & +0.0178 & -0.008 \\
\hline 35 & 96 Tauri & 6.0 & \(44333 \cdot 3^{18}\) & " & 30 & \(+3.4280\) & +0.0092 & +0.003 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distance Jani. 1, 1892} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Total
No. of
ObserraObserva
tions} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{Secular Variation.} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A.C. & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1872
\end{aligned}
\] & \[
\begin{gathered}
\text { Gr. Cat. } \\
1880
\end{gathered}
\] \\
\hline & - " & & & " & " & " & & & \\
\hline 1 & \(\begin{array}{llll}56 & 39 & 8 \cdot 4\end{array}\) & 1 & 4 & - \(16 \cdot 870\) & \(+0.287\) & \(+0.020\) & 698 & ... & \\
\hline 2 & \(703555 \cdot 9\) & 5 & 19 & - 16.812 & \(+0.272\) & \(+0.015\) & \(70 \%\) & 210 & \(35^{\circ}\) \\
\hline 3. & \(\begin{array}{llll}49 & 5 & 39\end{array}\) & 2 & 11 & - 16.619 & \(+0.311\) & \(+0.100\) & 727. & 212 & 356 \\
\hline 4 & --54 \(51957 \cdot 8\) & I & 8 & - 16.145 & \(+0.322\) & -0.012 & 772 & 226 & 376 \\
\hline 5 & -49 \(2739^{\circ}\) & 1 & 4 & - 14.109 & + 0.409 & -0.020 & 963 & 285 & 464 \\
\hline 6 & \(6120{ }^{\text {9 }} 3^{*}\) & ... & ... & \(-13.986\) & \(+0.382\) & \(+0.026^{*}\) & 974 & 288 & 471 \\
\hline 7 & \(50475^{6 \cdot 2}\) & 3 & 14 & - 13.910 & \(+0.411\) & -0.020 & 981 & 290 & 472 \\
\hline 8 & \(47 \quad 54 \quad 0 \cdot 3\) & 1 & 6 & - 13.690 & \(+0.427\) & -0.020 & 993 & ... & ... \\
\hline 9 & 56 10 \(22 \cdot 6\) & 2 & 8 & - 13.420 & +0.411 & \(+0.060\) & 1017 & 305 & 499 \\
\hline 10... & \(612038 \cdot 4\) & 4 & 105 & - 13.300 & +0.401 & \(+0.067\) & 1025 & & 504 \\
\hline 11 & \(65393^{1} 7\) & II & 131 & - 13.028 & +0.397 & +0.010 & 1052 & 313 & 517 \\
\hline 12 & \(803^{8} 39^{\circ}\) & 2 & 6 & - 12.801 & + 0.369 & . 0.000 & 1068 & 319 & 526 \\
\hline 13 & \(77 \quad 26\) 2.1 & 18 & 68 & - \(12 \cdot 55^{8}\) & +0.381 & \(+0.030\) & 1087 & 325 & 539 \\
\hline -14 & \(\begin{array}{llll}52 & 46 & 8 \cdot 8\end{array}\) & 2 & 8 & - II'92I & +0.461 & 0.000 & 1123 & 334 & ... \\
\hline 15 & \(5^{6} 22254.9\) & 2 & 7 & - II•820 & + 0.452 & \(0 \cdot 000\) & 1132 & & . \\
\hline 16 & \(\begin{array}{llll}58 & 3 & 16 \cdot 0\end{array}\) & 18 & 228 & - 11.677 & \(+0.45^{\circ}\) & \(+0.010\) & 1138 & 340 & 571 \\
\hline 17 & 655219.5 & 3 & 15 & - II. \(5^{89}\) & + 0.429 & \(+0.060\) & 1151 & ... & 577 \\
\hline 18 & 571425.7 & 3 & 14 & - 11.306 & \(+0.460\) & +0.010 & 1175 & ... & \\
\hline 19 & \(644443 \cdot 0\) & 2 & 97 & - 11.226 & + 0.439 & ... & 1192 & ... & 596 \\
\hline 20 & \(\begin{array}{llll}58 & 2615\end{array}\) & II & \({ }^{51}\) & - 10.970 & + +0.464 & +0.020 & 1207 & 355 & 603 \\
\hline 21 & \(5018 \quad 9 \cdot 2\) & 1 & 9 & - 10.730 & \(+0.499\) & \(+0.016\) & 1219 & 361 & 610 \\
\hline 22 & \(543^{1} 12 \cdot 3\) & 2 & 8 & - 10.630 & + 0.484 & +0.013 & 1228 & 363 & 6 I 3 \\
\hline 23 & \(681658 \cdot 8\) & 2 & 10 & - 10.106 & +0.449 & +0.181 & 1260 & 374 & 633 \\
\hline 24 & \(63 \quad 48 \quad 5 \cdot 2\) & 7 & 20 & - 9.702 & \(+0.470\) & \(+0.069\) & 1279 & \(3^{81}\) & 648 \\
\hline 25 & \(494725^{\circ} 6\) & 2 & 8 & - 9.450 & +0.527 & \(+0.025\) & 1291 & \(3^{86}\) & 660 \\
\hline 26 & \(74 \quad 5212 \cdot 6\) & 9 & 121 & - 9.287 & + 0.443 & \(+0.044\) & 1302 & 388 & 664 \\
\hline 27... & 625429.5 & 8 & 41 & - 8.970 & \(+0.484\) & \(+0.105\) & 1326 & 398 & 681 \\
\hline 28 & \(\begin{array}{llll}72 & 19 & 10.9\end{array}\) & 3 & 14 & - 8.535 & \(+0.460\) & ... & 1365 & 413 & 703 \\
\hline 29. & \(\begin{array}{lll}74 & 2 & 30 \cdot 0\end{array}\) & 2 & 8 & - 8.126 & \(+0.460\) & \(+0.050\) & 1391 & 422 & ... \\
\hline \(3^{\circ}\) & 742250.9 & 1 & 5 & - 8.021 & \(+0.460\) & \(+0.070\) & 1402 & 425 & ... \\
\hline 31 & \(61354 \mathrm{I} \cdot 4\) & 7 & 115 & - 7.303 & \(+0.512\) & \(+0.040\) & 1444 & 440 & 750 \\
\hline 32 & \(\cdots 67 \quad 150 \cdot 1\) & 18 & 181. & - 7.206 & +0.492 & \(+0.022\) & 1449 & 441 & 754 \\
\hline 33 & \(\begin{array}{llll}79 & 3 & 20.4\end{array}\) & 12 & 4.5 & - 6.986 & \(+0.45^{6}\) & \(+0.035\) & 1460 & ... & 761. \\
\hline 34 & 5242 II•9 & 4 & 18 & - 6.64I & + \(0.55^{8}\) & 0.000 & 1476 & 447 & 776 \\
\hline 35. & \begin{tabular}{c}
-7417 \\
\hline
\end{tabular} & 2 & 96 & - 6:565 & +0.475 & \(+0.080\) & 1485 & & ... \\
\hline
\end{tabular}
* Brought up to date from the Greenwich Catalogue of 1880 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & Mean Right Ascension Jan. 1, 1892 & Nautical Almanac Comparison Star & \[
\begin{gathered}
\text { No. of } \\
\text { Obser- } \\
\text { rations }
\end{gathered}
\] & Annual Precession & Secular Variation & Proper Motion \\
\hline & & & \(h \mathrm{~m}\) s & & & \(\delta\) & \(s\) & \(s\) \\
\hline \(3^{6}\) & 2 Aurigæ . & \(5^{\circ} 0\) & 44524.063 & \(\iota\) Aurigx & 10 & \(+4.0106\) & +0.0168 & -0.009 \\
\hline 37 & 3 Orionis • \(\pi^{3}\) & \(4^{\circ} 0\) & \(44527 \cdot 226\) & \(\mu\) Eridani & 8 & \(+3 \cdot 1928\) & +0.0067 & \(+0.005\) \\
\hline \(3^{8}\) & 5 Orionis & \(5^{\circ} 7\) & \(44744 \cdot 770\) & \(\iota\) Aurigæ & 12 & \(+3 \cdot 1243\) & +0.006I & +0:001 \\
\hline 39 & 98 Tauri . . \(k\) & \(5 \cdot 7\) & \(45132 \cdot 666\) & , & 10 & \(+3 \cdot 6652\) & +0.0109 & -0.006 \\
\hline 40 & 4 Aurigæ . & \(5^{\bullet 1}\) & \(45^{\text {¹ }} 55^{\circ} 375\) & \% & 24 & \(+4.0615\) & \(+0.0163\) & -0.003 \\
\hline 4 I & 102 Tauri . . \(\iota\) & \(4^{\circ} 7\) & \(45^{6} 38 \cdot 311\) & ८ Aurigæ & 12 & \(+3.5775\) & +0.0094 & 0.000 \\
\hline 42 & Io Aurigæ . \(\eta\) & \(3 \cdot 3\) & \(45^{8} 56 \cdot 31 \mathrm{I}\) & " & 10 & + 4.1972 & +0.0166 & -0.003 \\
\hline 43 & \({ }_{5}\) Orionis . & \(4 \cdot 8\) & \(\begin{array}{lllll}5 & 3 & 31 \cdot 184\end{array}\) & \(\beta\) Tauri & 14 & + 3.4311 & +0.0073 & \(+0.008\) \\
\hline 44 & 11 Aurigæ - \(\mu\) & 4.9 & \(\begin{array}{llll}5 & 6 & 2 \cdot 346\end{array}\) & \% & 14 & \(+4^{1013}\) & +0.0136 & \(+0.003\) \\
\hline 45 & 18 Orionis . . & \(5 \cdot 6\) & \(5104 \cdot 191\) & " & 14 & \(+3.3315\) & +0.0060 & - \\
\hline 46 & Piazzi V. 26. & \(5 \cdot 3\) & 5 II 53.684 & \(\beta\) Tauri & 24 & + 3.9424 & \(+0.0107\) & ... \\
\hline 47 & 109 Tauri . . \(n\) & \(5 \cdot 2\) & \(51247 \cdot 363\) & " & 38 & \(+3 \cdot 6009\) & +0.0076 & \(+0.005\) \\
\hline 48 & Piazzi V. 41. & \(6 \cdot 5\) & 51412.536 & \% & 34 & + 3.7648 & +0.0087 & \(+0.002\) \\
\hline 49 & 21 Aurigæ - \(\sigma\) & \(5 \cdot 2\) & \(\begin{array}{llllll}5 & 17 & 18 \cdot 914\end{array}\) & \% & 44 & \(+4.0728\) & +0.0108 & \(+0.009\) \\
\hline 50 & Piazzi V. 63. & 5.9 & \(51741 \cdot 018\) & " & 10 & \(+3.8635\) & +0.0089 & ... \\
\hline 51 & III Tauri & \(5^{* 2}\) & \(\begin{array}{llll}5 & 18 & 7 & 441\end{array}\) & \(\beta\) Tauri & 14 & \(+3.4816\) & \(+0.0062\) & \(+0.024\) \\
\hline 52 & 115 Tauri & \(5 \cdot 5\) & \(5205^{2 \cdot 174}\) & \% & 24 & \(+3.4973\) & +0.0060 & +0.005 \\
\hline 53 & 116 Tauri & \(6 \cdot 0\) & 52133.373 & \% & 36 & \(+3.4451\) & +0.0056 & \(+0.004\) \\
\hline 54 & 25 Aurigæ - \(\chi\) & \(5^{\circ} 0\) & \(52541 \times 995\) & \% & 12 & \(+3.9022\) & \(+0.0078\) & +0.005 \\
\hline 55 & 121 Tauri . . & \(5 \cdot 4\) & \(52851 \times 490\) & \% & 12 & \(+3.6614\) & \(+0.0059\) & +0.009 \\
\hline 56 & I28 Tauri & 6 & \(53839 \cdot 888\) & \(\epsilon\) Orionis & 8 & + 3.4553 & \(+0.0039\) & -0.001 \\
\hline 57 & 129 Tauri . & \(6 \cdot 0\) & \(54032 \cdot 796\) & " & 8 & \(+3.4490\) & \(+0.0038\) & -0.002 \\
\hline 58 & 132 Tauri . & \(5^{\circ} 6\) & \(542 \quad 23 \cdot 199\) & " & 8 & \(+3.6809\) & +0.004I & -0.004 \\
\hline 59 & 139 Tauri . & \(5^{\circ} \mathrm{I}\) & \(55^{1} 17 \cdot 632\) & \(\nu\) Orionis & 12 & + 3.7224 & +0.0029 & \(+0.002\) \\
\hline 60 & * B.F. 817. & \(6 \cdot 0\) & \(55^{2} 48 \cdot 673\) & " & 14 & \(+3.3761\) & \(+0.0024\) & 0.000 \\
\hline 61 & 14I Tauri . & \(6 \cdot 7\) & \(55510 \cdot 611\) & \(\nu\) Orionis & 14 & \(+3.6234\) & +0.0023 & \(+0.020\) \\
\hline 62 & 1 Geminorum . & \(4 \cdot 3\) & \(55733 \cdot 378\) & נ & 10 & \(+3 \cdot 6474\) & \(+0.0020\) & ... \\
\hline 63 & 40 Aurigæ - & 6.0 & \(\begin{array}{llll}5 & 59 & 8 \cdot 424\end{array}\) & , & 22 & \(+4.1357\) & \(+0.0016\) & \(+0.001\) \\
\hline 64 & 3 Geminorum . & \(6 \cdot 5\) & \(\begin{array}{llll}6 & 310.538\end{array}\) & , and \(\mu \mathrm{Gem}\). & 96 & \(+3 \cdot 6436\) & \(+0.0012\) & \(+0.002\) \\
\hline 65 & 68 Orionis & \(6 \cdot 0\) & \(6 \quad 537 \cdot 549\) & \(\mu\) Geminorum & 54 & \(+3.5541\) & \(+0.0010\) & 0.000 \\
\hline 66 & 6 Geminorum . & \(6 \cdot 7\) & \(6 \quad 5 \quad 46 \cdot 325\) & \(\mu\) Gem. and \(\nu\) Orionis & 22 & \(+3.6380\) & +0.0009 & +0.004 \\
\hline 67 & 71 Orionis & \(5^{\circ 1}\) & \(\begin{array}{llll}6 & 8 & 29 \cdot 654\end{array}\) & \(\nu\) Orionis - & 14 & \(+3.5376\) & \(+0.0007\) & -0.006 \\
\hline 68 & 44 Aurigæ • \(\kappa\) & \(4 \cdot 5\) & \(\begin{array}{llll}6 & 8 & 29.849\end{array}\) & \(\mu\) Gem, and \(\nu\) Orionis & 26 & \(+3.8296\) & \(+0.0002\) & -0.002 \\
\hline 69 & Bradley 918. & \(7 \cdot 0\) & 6 11 40.313 & \(\eta\) Gem. and \(\mu\) Gem. & 50 & \(+4.0162\) & -0.0009 & \(+0.005\) \\
\hline 70 & 15 Geminorum . & \(7 \cdot 0\) & \(62120 \cdot 379\) & \(\gamma\) Gem. , & 26 & \(+3.5797\) & -0.0009 & -0.002 \\
\hline
\end{tabular}

\footnotetext{
* Baily's Edition of Flamsteed's Cataloguc.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distance Jan. 1, 1892} & \multirow[t]{2}{*}{No. of
Stations
of Obser-
ration} & \multirow[t]{2}{*}{Total No. of Observa tions} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{Secular Variation} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A.C. & Gr. Cat. 1872 & Gr. Cat. 1880 \\
\hline & - " & & & " & " & * & & & \\
\hline \(3^{6}\) & \(532848 \cdot 4\) & 5 & 22 & -6.413 & \(+0.557\) & \(+0.024\) & 1492 & 450 & 787 \\
\hline 37 & \(84344^{8 \cdot 6}\) & 1 & 4 & - \(6 \cdot 408\) & + 0.444 & \(+0.002\) & r 495 & ... & 789 \\
\hline \(3^{8}\) & \(8740 \times 5.4\) * & \(\ldots\) & ... & -6.218 & \(+0.436\) & \(+0.014\) & 1508 & & 796 \\
\hline 39 & \(\begin{array}{llll}65 & 7 & 1\end{array}\) & 9 & 121 & - 5.901 & \(+0.513\) & \(+0.063\) & 1528 & 460 & 808 \\
\hline 40 & \(521626 \cdot 0\) & 3 & 14 & - \(5 \cdot 869\) & +0.569 & \(+0.131\) & 1530 & ... & 809 \\
\hline 41 & \(683353 \cdot 9\) & 12 & 133 & - 5.474 & \(+0.504\) & \(+0.050\) & 1551 & 468 & 823 \\
\hline 42 & \(4^{8} 5444^{\circ} 7\) & 22 & 170 & - 5.280 & +0.593 & \(+0.105\) & 1558 & 471 & 828 \\
\hline 43 & \(743227 \cdot 7\) & 4 & 104 & \(-4.892\) & \(+0.487\) & 0.000 & 1591 & 480 & 846 \\
\hline 44 & \(5^{1} 3^{8} 40^{\circ} 3\) & 4 & 20 & \(-4 \cdot 678\) & \(+0.583\) & \(+0.125\) & 1602 & 482 & 851 \\
\hline 45 & \(784^{6} 5 \mathrm{I} \cdot 0^{*}\) & \(\ldots\) & \(\cdots\) & \(-4.334\) & \(+0.476\) & -0.003 & 1624 & ... & 869 \\
\hline 46 & 5622 1.4* & \(\cdots\) & \(\ldots\) & \(-4 \cdot 178\) & \(+0.564\) & \(+0.030\) & 1632 & & 874 \\
\hline 47 & \(68 \bigcirc 57 \cdot 8\) & 7 & 15 & - 4.102 & \(+0.516\) & \(+0.125\) & 1637 & 495 & 877 \\
\hline 48 & \(\begin{array}{llll}62 & 9 & 10 \cdot 3\end{array}\) & 6 & 20 & \(-3.980\) & \(+0.540\) & \(+0.007\) & 1648 & 49.8 & 879 \\
\hline 49 & \(\begin{array}{llll}52 & 42 & 58 \cdot 9\end{array}\) & 5 & 21 & - 3.713 & +0.585 & \(0 \cdot 000\) & 1663 & 499 & 888 \\
\hline 50 & \(\begin{array}{lllll} \\ 8 & 57 & 28 \cdot 5\end{array}\) & 2 & 100 & \(-3.682\) & +0.555 & 0.000 & r669 & ... & 890 \\
\hline 51 & 7243 3 \({ }^{\text {2* }}\) & \(\cdots\) & \(\ldots\) & - 3.644 & \(+0.501\) & \(-0.006\) & 1671 & 500 & 892 \\
\hline 52 & \(72751 \cdot 1\) & 4 & 18 & \(-3.407\) & \(+0.504\) & -0.020 & 1692 & & ... \\
\hline 53 & \(\begin{array}{lllll}74 & 13 & 3.4\end{array}\) & 3 & 12 & - \(3 \cdot 348\) & \(+0.497\) & \(+0.014\) & 1701 & 513 & ... \\
\hline 54 & \(575318 \cdot 8\) & 26 & 269 & - \(2 \cdot 990\) & \(+0.564\) & +0.013 & 1723 & 518 & 915 \\
\hline 55 & 66 I \(59 \cdot 6\) & 8 & 34 & - 2.716 & \(+0.530\) & \(\underline{+}+0.070\) & 1742 & 525 & 927 \\
\hline 56 & \(735742 \cdot 3\) & 6 & 23 & - 1.864 & \(+0.502\) & \(+0.088\) & 1810 & 544 & \(\ldots\) \\
\hline 57 & \(741312 \cdot 7\) & 9 & 113 & - I•700 & \(+0.502\) & 0.000 & 1821 & ... & \(\ldots\) \\
\hline \(5^{8}\) & \(652810 \cdot 1\) & 7 & 29 & - I. 539 & \(+0.536\) & \(+0.053\) & 1837 & \(55^{1}\) & ... \\
\hline 59 & \(64 \quad 3 \quad 36 \cdot 9\) & 7 & 112 & -0.762 & + 0.543 & \(+0.030\) & 1896 & 569 & 1010 \\
\hline 60 & 771210.4 & 2 & 7 & -0.629 & +0.492 & \(+0.041\) & 1907 & 572 & ... \\
\hline 61 & \(67 \quad 36 \quad 9 \cdot 7\) & 2 & 8 & -0.422 & \(+0.528\) & \(+0.033\) & 1925 & ... & 1021 \\
\hline 62 & 664353.4 & 34 & 221 & -0.214 & \(+0.532\) & \(+0.104\) & 1938 & 579 & 1026 \\
\hline 63 & \(513028 \cdot 6\) & I & 3 & -0.075 & \(+0.603\) & & 1942 & 580 & ... \\
\hline 64 & \(66 \quad 52 \quad 10 \cdot 8\) & 12 & 127 & \(+0.278\) & \(+0.531\) & -0.006 & 1971 & 589 & 1043 \\
\hline 65 & 70 I1 \(9 \cdot 6\) & 3 & 13 & +0.492 & \(+0.518\) & ... & 1986 & 592 & ... \\
\hline 66 & \(67 \quad 4 \quad 4.0\) & 4 & 8 & \(+0.505\) & \(+0.530\) & \(+0.017\) & 1987 & 593 & 1052 \\
\hline 67 & \(7048 \quad 28 \cdot 8\) & 1 & 8 & +0.743 & \(+0.515\) & \(+0.205\) & 2004 & 602 & 1059 \\
\hline 68 & -60 \(2746 \cdot 3\) & \(3^{6}\) & 296 & +0.743 & \(+0.55^{8}\) & \(+0.270\) & 2001 & 601 & 1058 \\
\hline 69 & -54 4540 & I & 4 & + 1.021 & \(+0.584\) & \(+0.040\) & 2021 & 608 & 1065 \\
\hline 70 & \(69842: 0\) & 9 & 22 & + 1.864 & \(+0.519\) & \(+0.061\) & 2080 & 618 & 1098 \\
\hline
\end{tabular}
* Brought up to date from the Greenwich Catalogue of 1880.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & Mean Right
Ascension
Jan. 1, 1892 & Nautical Almanac
Comparison star & \[
\begin{gathered}
\text { No. of } \\
\text { Obser- } \\
\text { rations }
\end{gathered}
\] & \(\underset{\text { Precession }}{\text { Annual }}\) & \(\underset{\substack{\text { Secnlar } \\ \text { Variation }}}{ }\) & Proper Motion \\
\hline & & & \({ }_{6} \mathrm{~m}\) & & & \(s\) & s & \\
\hline 71 & 48 Aurigæ & \(5 \cdot 2\) & \(62137 \cdot 702\) & \(\mu\) Geminorum & 46 & \(+3.8584\) & -0.0022 & +0.006 \\
\hline 72 & 18 Geminorum \(\nu\) & 4.0 & \(62233 \cdot 078\) & , \({ }^{\text {, }}\) & 2 & +3.5642 & -0.0010 & \\
\hline 73 & Piazzi VI. 114 & \(6 \cdot 8\) & 62333.270 & \(\gamma\) Gem. and \(\mu\) Gem. & 48 & + 3.7881 & -0.0022 & +0.009 \\
\hline 74 & Piazzi VI. 126 & \(6 \cdot 0\) & 62524.454 & \(\mu\) Geminorum & 38 & \(+3.9200\) & \(-0.0032\) & \(+0.005\) \\
\hline 75 & 49 Aurigæ & \(4 \cdot 9\) & 62824.005 & \(\gamma\) Gem. and \(\mu\) Gem. & 18 & \(+3 \cdot 7811\) & \(-0.0029\) & +0.001 \\
\hline 76 & Groom. 1190. & \(6 \cdot 7\) & \(629 \quad 7 \cdot 476\) & \(\mu\) Geminorum & 22 & + 4.1286 & -0.0053 & \(+0.006\) \\
\hline 77 & 51 Aurigæ & 5.7 & \(63110 \cdot 633\) & & 10 & + 4.1639 & -0.0060 & + 0.002 \\
\hline 78 & 54 Aurigæ & 5.7 & 63244.440 & \(\gamma\) Geminorum & 18 & \(+3.7868\) & -0.0036 & -0.004 \\
\hline 79 & \({ }^{27}\) Geminorum \(\epsilon\) & 3.2 & \(63717 \cdot 268\) & \(\gamma\) Gem. and \(\xi\) Gem. & 40 & + 3.6944 & \(-0.0037\) & \(+0.003\) \\
\hline 80 & 17 Monocerotis & \(5 \cdot 0\) & 64127.975 & \(\gamma\) Geminorum & 16 & \(+3.2610\) & -0.0014 & 0.000 \\
\hline 81 & 59 Aurigæ & \(6 \cdot 7\) & 64535.637 & \(\gamma\) Geminorum & 16 & + 4'1337 & \(-0.0092\) & \\
\hline 82 & 38 Geminorum & \(4 \cdot 8\) & \(64833 \cdot 189\) & \(\xi\) Geminorum & 16 & +3.3819 & -0.0027 & +0.010 \\
\hline 83 & 40 Geminorum & \(6 \cdot 7\) & 65247.947 & \(\gamma\) Canis Majoris & 10 & \(+3 \cdot 7091\) & -0.0060 & +0.003 \\
\hline 84 & 42 Geminorum \(\omega\) & \(5 \cdot 3\) & 655 50.074 & , & 12 & \(+3.6603\) & -0.0060 & +0.005 \\
\hline 85 & 45 Geminorum & \(5 \cdot 6\) & \(7 \quad 2 \quad 10.539\) & " & 12 & +3.4444 & -0.0045 & \(+0.004\) \\
\hline 86 & 46 Geminorum \(\tau\) & \(4 \cdot 6\) & \(7 \quad 415 \cdot 961\) & \(\delta\) Geminorum & 12 & + 3.8269 & -0.0091 & -0.001 \\
\hline 87 & 48 Geminorum & 5.8 & \(7 \quad 5 \quad 52 \cdot 659\) & , & 12 & + 3.6517 & \(-0.0072\) & -0.002 \\
\hline 88 & 51 Geminorum & \(5 \cdot 4\) & \(7 \quad 710 \cdot 195\) & " & 12 & + 3.4479 & \(-0.0049\) & +0.001 \\
\hline 89 & 52 Geminorum & \(6 \cdot 3\) & \(\begin{array}{lllll}7 & 8 & 5 \cdot 656\end{array}\) & " & 8 & + 3.6706 & \(-0.0077\) & +0.002 \\
\hline 90 & 54 Geminorum \(\lambda\) & \(3 \cdot 6\) & 71153.177 & " & 12 & \(+3.4549\) & \(-0.0056\) & -0.010 \\
\hline 91 & 65 Aurigæ. & 5.3 & \(71449 \times 745\) & \(\delta\) Geminorum & 10 & \(+4.0255\) & -0.0141 & -0.004 \\
\hline 92 & 66 Aurigæ. & \(6 \cdot 0\) & 71639.831 & & 10 & + \(4 \cdot 1657\) & -0.0172 & +0.003 \\
\hline 93 & 57 Geminorum A & \(5^{\circ}\) & 71653.391 & \(\beta\) Canis Minoris & 8 & +3.6682 & \(-0.0088\) & 0.011 \\
\hline 94 & I Canis Minoris & \(5^{\circ} 4\) & \(71858 \cdot 320\) & \(\beta\) Gem. \& \(\beta\) Can.Min. & 10 & + 3.3373 & -0.0049 & 00 \\
\hline 95 & 60 Geminorum & \(4^{\circ} 0\) & 7191170 & \(\delta\) Geminorum & 22 & +3.7419 & \(-0.0102\) & -0.007 \\
\hline 96 & 63 Geminorum & \(5 \cdot 3\) & 72119.786 & \(\beta\) Geminorum & 2 & +3.5706 & -0.0080 & 0.004 \\
\hline 97 & 62 Geminorum \(\rho\) & \(4 \cdot 2\) & \(\begin{array}{lll}722 & 9.932\end{array}\) & \(\delta\) Geminorum & 10 & + \(3 \cdot 8548\) & \(-0.0127\) & \(+0.013\) \\
\hline 98 & 65 Geminorum \(b^{2}\) & \(5 \cdot 1\) & \(723 \quad 5 \cdot 713\) & \(\beta\) Canis Minoris & 12 & +3.7411 & -0.0108 & - 0.004 \\
\hline 99 & PiazziVII. 114 & \(6 \cdot 0\) & \(72356 \cdot 886\) & , & 12 & +3.7402 & -0.0110 & +0.003 \\
\hline 100 & 69 Geminorum v & \(4 \cdot 2\) & 72916.037 & " & 4 & \(+3 \cdot 7064\) & -0.0112 & -0.005 \\
\hline 101 & PiazziVII. 179 & \(7{ }^{\circ} 0\) & \(73^{6} 56 \cdot 252\) & \(\beta\) Canis Minoris & 12 & +3.5814 & -0.0100 & -0.003 \\
\hline 102 & 11 Canis Minoris & \(5 \cdot 6\) & 74019.754 & \(\beta\) Geminorum & 12 & + 3.3086 & -0.0060 & \(+0.007\) \\
\hline 103 & 83 Geminorum \(\phi\) & 4.9 & \(74^{6} 53 \cdot 144\) & 6 Cancri & \(4^{2}\) & +3.6822 & -0.0132 & -0.009 \\
\hline 104 & 85 Geminorum & \(5 \cdot 3\) & 749 21.659 & " & 40 & +3.5088 & -0.0101 & -0.006 \\
\hline 105 & I Caneri & 5.9 & \(75051 \cdot 503\) & and \(\beta\) Gem. & 44 & \(+3.4137\) & \(-0.0085\) & -0.005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distanco Jan. 1, 1892} & \multirow[t]{2}{*}{No. of
Stations
of Obser-
ration} & \multirow[t]{2}{*}{Total No. of tions} & \multirow[b]{2}{*}{\begin{tabular}{l}
Annual \\
Precession
\end{tabular}} & \multirow[b]{2}{*}{Secular Variation} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A.C. & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1872
\end{aligned}
\] & \[
\begin{gathered}
\text { Gr. Cat. } \\
1880
\end{gathered}
\] \\
\hline & - , " & & & " & " & " & & & \\
\hline 71 & \(592627 \cdot 1\) & 2 & 100 & \(+1.890\) & \(+0.559\) & \(+0.007\) & 2082 & 620 & 1099 \\
\hline 72 & \(694312 \cdot 3\) & 23 & 71 & + 1.970 & \(+0.5^{16}\) & \(0 \cdot 000\) & 2090 & 623 & 1104 \\
\hline 73 & \(6143 \quad 2 \cdot 3\) & 4 & 10 & \(+2.057\) & \(+0.549\) & \(+0.100\) & 2097 ' & 626 & 1108 \\
\hline 74 & \(\begin{array}{llll}57 & 28 & 7 \cdot 6\end{array}\) & 3 & 10 & \(+2.219\) & \(+0.567\) & ... & 2110 & 628 & 1110 \\
\hline 75 & \(61533^{8 \cdot 6}\) & 2 & 10 & +2.479 & \(+0.546\) & \(+0.015\) & 2133 & 635 & 1127 \\
\hline 76 & \(5128 \quad 2 \cdot 1\) & 3 & 13 & + 2.541 & \(+0.596\) & -0.110 & 2139 & 636 & ... \\
\hline 77 & 503053.5 & 1 & 6 & \(+2.719\) & \(+0.600\) & +0.119 & 2155 & 641 & 1135 \\
\hline 78 & \(613^{8} 3 \mathrm{I} \cdot 8\) & 6 & 21 & \(+2.855\) & \(+0.545\) & \(+0.028\) & 2170 & 649 & 1144 \\
\hline 79 & \(644545 \cdot 6\) & 37 & 171 & \(+3.248\) & \(+0.530\) & \(+0.027\) & 2194 & 652 & 1159 \\
\hline 80 & 81 5049.2 & 2 & 4 & \(+3 \cdot 608\) & \(+0.466\) & 0.000 & 2216 & 659 & 1173 \\
\hline 81 & 510907 & 1 & 4 & \(+3.963\) & \(+0.589\) & \(0 \cdot 000\) & 2235 & 663 & ... \\
\hline 82 & \(7641 \quad 7 \cdot 7\) & 1 & 3 & \(+4.217\) & \(+0.480\) & \(+0.071\) & 2255 & 669 & 1184 \\
\hline 83 & \(635623 \cdot 8\) & 4 & 10 & \(+4.579\) & \(+0.525\) & \(+0.061\) & 2278 & 679 & ... \\
\hline 84 & 6537 52.1 & 7 & 24 & \(+4.837\) & \(+0.516\) & \(-0.022\) & 2299 & 682 & 1197 \\
\hline 85 & 7353 51•0 & 10 & \(3^{6}\) & + 5.374 & \(+0.482\) & \(+0.157\) & 2330 & 690 & 1218 \\
\hline 86 & \(593442 \cdot 7\) & 21 & 225 & \(+5.55^{\circ}\) & +0.534 & \(+0.066\) & 2340 & 693 & 1221 \\
\hline 87 & \(654129 \cdot 2\) & 28 & 105 & \(+5.685\) & + 0.508 & \(+0.057\) & 2350 & 697 & 1227 \\
\hline 88 & 7339 30*3 & 4 & 12 & + 5.793 & \(+0.479\) & \(+0.073\) & 2362 & 698 & 1233 \\
\hline 89 & \(64554 \mathrm{I} \cdot 3\) & 1 & 2 & \(+5.871\) & \(+0.509\) & \(+0.105\) & 2364 & 700 & 1237 \\
\hline 90 & \(731555^{2}\) & 14 & 55 & \(+6 \cdot 187\) & \(+0.477\) & \(+0.035\) & 2398 & 706 & 1250 \\
\hline 91 & \(\begin{array}{llll}53 & 2 & 13 & 8\end{array}\) & 5 & 20 & \(+6 \cdot 432\) & \(+0.553\) & \(+0.055\) & 2416 & 714 & 1261 \\
\hline 92 & \(\begin{array}{lllll}49 & 7 & 13.5\end{array}\) & 1 & 4 & \(+6 \cdot 5^{8} 3\) & \(+0.571\) & & 2429 & 718 & \\
\hline 93 & \(644433 \cdot 9\) & 1 & 4 & \(+6.602\) & \(+0.502\) & \(+0.056\) & 2431 & 719 & 1265 \\
\hline 94 & \(\begin{array}{llll}78 & 7 & 10 \cdot 9\end{array}\) & 1 & 4 & \(+6.774\) & \(+0.455\) & \(+0.056\) & 2444 & 725 & 1272 \\
\hline 95 & \(615916 \cdot 8\) & 27 & 146 & \(+6.778\) & \(+0.511\) & +0.109 & 2442 & 724 & 1271 \\
\hline 96 & 682040 & 9 & 30 & \(+6 \cdot 968\) & \(+0.485\) & \(+0.108\) & 2460 & 727 & 1281 \\
\hline 97 & \(\begin{array}{lll}58 & 0 & 5 \cdot 4\end{array}\) & 8 & 133 & \(+7.036\) & \(+0.523\) & \(-0.157\) & 2464 & 729 & 1284 \\
\hline 98 & \(615142 \cdot 4\) & 8 & \(3^{6}\) & \(+7.112\) & \(+0.507\) & \(+0.045\) & 2469 & 733 & 1289 \\
\hline 99 & \(6151(\cdots)\) & 1 & 3 & \(+7 \cdot 182\) & \(+0.506\) & & 2472 & 734 & ... \\
\hline 100 & \(625153 \cdot 2\) & 22 & 77 & \(+7.615\) & \(+0.497\) & \(+0.129\) & 2493 & 742 & 1303 \\
\hline 101 & \(672045 \cdot 0\) & 2 & 96 & \(+8.231\) & \(+0.473\) & -0.070 & 2544 & ... & \\
\hline 102 & \(78 \quad 58 \quad 7 \cdot 4\) & 1 & 4 & \(+8.501\) & \(+0.433\) & ... & 2564 & 764 & \\
\hline 103 & 625719.3 & 23 & 108 & \(+9.017\) & \(+0.476\) & \(+0.056\) & 2617 & \(774^{\circ}\) & 1343 \\
\hline 104 & 694954.0 & 2 & 8 & \(+9.210\) & \(+0.451\) & \(+0.070\) & 2632 & ... & 1349 \\
\hline 105 & \(735518 \cdot 7\) & 23 & \(9^{6}\) & \(+9.326\) & \(+0.437\) & \(+0.068\) & 2639 & 777 & \(135^{\circ}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & Mean Right Ascension Jan. 1, 1892 & Nautical Almanac Comparison Star & \[
\begin{gathered}
\text { No. of } \\
\text { Obser- } \\
\text { rations }
\end{gathered}
\] & Annual Precession & Secular Variation & Proper Motion \\
\hline & & &  & & & \(\delta\) & \(s\) & \(\varepsilon\) \\
\hline 106 & 2 Cancri . . \(\omega^{1}\) & \(5 \cdot 9\) & \(75423 \cdot 640\) & 6 Cancri & 10 & \(+3.6372\) & -0.0132 & \(-0.007\) \\
\hline 107 & 3 Cancri & \(6 \cdot 0\) & \(75435 \cdot 886\) & " & \(3^{8}\) & \(+3.4448\) & \(-0.0094\) & -0.006 \\
\hline 108 & 8 Cancri & \(6 \cdot 0\) & \(\begin{array}{lll}7 & 59 & 3 \cdot 479\end{array}\) & " & 12 & \(+3.3496\) & -0.0080 & -0.005 \\
\hline 109 & 9 Cancri - . \(\mu^{1}\) & \(6 \cdot 2\) & \(75954 \cdot 462\) & " & 34 & \(+3 \cdot 5628\) & -0.0123 & \(+0.003\) \\
\hline 110 & Io Cancri . . \(\mu^{2}\) & \(5 \cdot 3\) & 8 I 24.464 & " & \(3^{6}\) & \(+3 \cdot 5362\) & -0.0119 & \(-0.003\) \\
\hline III & 16 Cancri . . 5 & 4.7 & \(\begin{array}{lll}8 & 6 & \text { I.004 }\end{array}\) & 6 Cancri & 30 & \(+3.4423\) & -0.0103 & \(+0.002\) \\
\hline 112 & * B.F. 115 & \(7 \cdot 0\) & \(8 \quad 619.651\) & \(\beta\) Cancri & 8 & \(+3 \cdot 3634\) & -0.0088 & \(+0.001\) \\
\hline 113 & \({ }_{15}\) Cancri & 5.6 & \(\begin{array}{lllllllll}8 & 6 & 27 \cdot 262\end{array}\) & " & 34 & \(+3 \cdot 7294\) & -0.0171 & +0.001 \\
\hline 114 & 18 Cancri . . \(\chi\) & \(5^{\circ} \mathrm{I}\) & \(81330 \cdot 184\) & " & 22 & \(+3.6554\) & \(-0.0162\) & - 0.007 \\
\hline 115 & I9 Cancri . . \(\lambda\) & 5.7 & 8146.779 & " & 34 & \(+3.5772\) & -0.0142 & -0.007 \\
\hline 116 & 20 Cancri . . \(d^{1}\) & 5.9 & 817 10.713 & \(\beta\) Cancri & 22 & \(+3.4460\) & -0.0114 & -0.009 \\
\hline 117 & Groom. 1433 . & \(6 \cdot 0\) & 81724.005 & " & 24 & \(+4.0787\) & -0.0300 & \(+0.002\) \\
\hline 118 & 30 Cancri . . \(v^{3}\) & 5•8 & \(8 \quad 25 \quad 7.315\) & \(\eta\) Cancri & 18 & \(+3.5625\) & -.0.0151 & - 0.009 \\
\hline 119 & Groom. 1450 & \(6 \cdot 7\) & \(82553 \cdot 75^{8}\) & \(\beta\) Cancri & 12 & \(+3.9243\) & -0.0266 & -0.013 \\
\hline 120 & 32 Lyncis & \(6 \cdot 0\) & \(8 \cdot 26 \quad 25 \cdot 885\) & \(\gamma\) Cancri & 22 & \(+3 \cdot 8755\) & -0.0250 & -0.022 \\
\hline 121 & 33 Lyacis & \(6 \cdot 0\) & \(82747 \cdot 45^{2}\) & \(\gamma\) Cancri \& \(\eta\) Cancri & \(3^{6}\) & \(+3 \cdot 8716\) & \(-0.0251\) & \(-0.007\) \\
\hline 122 & 35 Cancri & \(7 \cdot 7\) & \(8296 \cdot 932\) & \(\eta\) Cancri & 8 & \(+3.4589\) & -0.0127 & -0.003 \\
\hline 123 & \(3^{6}\) Cancri . . \(c^{1}\) & 5.9 & 83114.510 & " & 12 & \(+3 \cdot 2594\) & -0.008I & -0.002 \\
\hline 124 & Piaz. VIII. 134 & \(7 \cdot 7\) & \(83444 \cdot 5^{17}\) & \(\gamma\) Cancri & 24 & \(+3 \cdot 45^{16}\) & -0.0131 & \(-0.007\) \\
\hline 125 & 47 Cancri . . \(\delta\) & \(4 \cdot 3\) & \(83^{8} 32 \cdot 878\) & " & 8 & \(+3.418 \mathrm{I}\) & -0.0125 & -0.001 \\
\hline 126 & 46 Cancri . . \(\sigma^{1}\) & \(6 \cdot 7\) & \(83843 \cdot 803\) & \(\gamma\) Cancri & 6 & \(+3.6930\) & -0.0209 & -0.003 \\
\hline 127 & 48 Cancri . . ८ & 4.0 & \(840 \quad 9 \cdot 65^{8}\) & \(\eta\) Canc., \(\gamma\) Canc. \& \(\in\) Eyd. & 28 & \(+3 \cdot 6435\) & -0.0195 & -0.003 \\
\hline 128 & 50 Cancri . . \(\mathrm{A}^{2}\) & \(5 \cdot 8\) & \(8410.75^{\circ}\) & \(\gamma\) Cancri & 10 & \(+3 \cdot 2989\) & -0.0095 & -0.008 \\
\hline 129 & 13 Hydræ. . \(\rho\) & 4*3 & \(84242 \cdot 726\) & ,, \& \(\in\) Hydræ & 44 & \(+3.1834\) & -0.0069 & -0.003 \\
\hline 130 & Piaz. VIII. 173 & \(6 \cdot 5\) & \(84349 \cdot 516\) & \(\gamma\) Cancri & 2 & \(+3 \cdot 745^{6}\) & \(-0.023^{6}\) & -0.012 \\
\hline 131 & 51 Cancri & \(5 \cdot 7\) & 84554.321 & \(\gamma\) Cancri \& \(\epsilon\) Hydræ & 20 & \(+3.7200\) & -0.0230 & \(+0.005\) \\
\hline \({ }^{1} 32\) & 53 Cancri - \(\rho^{1}\) & \(6 \cdot 5\) & \(845 \quad 58 \cdot 939\) & \(\gamma\) Cancri & 16 & \(+3.6200\) & -0.0195 & -0.002 \\
\hline \({ }^{1} 33\) & 55 Cancri - . \(\rho^{2}\) & 6.2 & \(846 \quad 9.774\) & " & 8 & \(+3 \cdot 6214\) & -0.0195 & -0.041 \\
\hline \({ }^{1} 34\) & 57 Cancri • \(\sigma^{2}\) & \(5 \cdot 5\) & \(84739^{.15}{ }^{2}\) & є Hydræ & 18 & \(+3 \cdot 6701\) & -0.0215 & -0.006 \\
\hline 135 & 59 Cancri & \(5 \cdot 5\) & \(85016 \cdot 470\) & \(\gamma\) Cancri & 2 & \(+3.7200\) & -0.0237 & -0.017 \\
\hline \({ }^{1} 3^{6}\) & * B.F. 1267 & \(6 \cdot 3\) & \(855^{\text {I }} 52 \cdot 435\) & \(\epsilon\) Hydræ & 10 & \(+3 \cdot 2416\) & -0.0086 & - 0.010 \\
\hline 137. & 64 Cancri & \(5^{\circ} 7\) & \(85^{8}\) & \(\gamma\) Cancri & 2 & + 3.7013 & -0.0235 & -0.016 \\
\hline 138 & 10 Ursæ Majoris & \(4 \cdot 0\) & \(853{ }^{8} 7 \cdot 764\) & \(\kappa\) Cancri & 12 & \(+3.9535\) & -0.0343 & -0.040 \\
\hline 139 & 67 Cancri & 5.8 & \(85522 \cdot 687\) & " & 12 & \(+3 \cdot 5923\) & \(-0.0198\) & 0.000 \\
\hline 140 & 69 Cancri . . v & \(5 \cdot 6\) & \(85^{6} 25 \cdot 43^{8}\) & " & 12 & \(+3 \cdot 5177\) & \(-0.0172\) & \(0 \cdot 000\) \\
\hline
\end{tabular}

\footnotetext{
* Baily's Edition of Flamsteed's Catalogue.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distaneo Jan. 1, 1892} & \multirow[t]{2}{*}{No. of Stations of Obser vation} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { No. of } \\
\text { Observa- } \\
\text { tions }
\end{gathered}
\]} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{Secular Variation} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A C. & \[
\begin{aligned}
& \text { Gr. Cat. Cat. } \\
& 1872
\end{aligned}
\] & Gr. Cat. 1880 \\
\hline & - , " & & & " & " & " & & & \\
\hline 106 & \(641845 \cdot 3\) & 15 & 73 & + 9.599 & \(+0.462\) & \(+0.075\) & 2657 & 781 & \({ }^{1} 363\) \\
\hline 107 & \(722344^{\circ} 5\) & 2 & 10 & + 9.614 & + 0.437 . & \(+0.025\) & 2659 & 782 & 1365 \\
\hline 108 & \(7634 \quad 28 \cdot 2\) & 2 & 8 & + 9.955 & \(+0.420\) & +0.050 & 2690 & ... & \\
\hline 109 & \(\begin{array}{llll}67 & 3 & 25.9\end{array}\) & 7 & 120 & +10.019 & + \(0.44^{6}\) & +0.056 & 2700 & 790 & 1378 \\
\hline 110 & \(\begin{array}{llll}68 & 618 \cdot 8\end{array}\) & 14 & 50 & +10.133 & + 0.44 I & + 0.087 & 2714 & 792 & 1383 \\
\hline 111 & 72 I \(39{ }^{\circ} 9\) & 8 & 24 & \(+10.479\) & \(+0.423\) & \(+0.150\) & 2744 & 798 & 1395 \\
\hline 112 & \(754026 \cdot 6^{*}\) & & & \(+10.502\) & +0.413 & ... & 2748 & 801 & ... \\
\hline 113 & 60 I 12.5 & 4 & 106 & \(+10 \cdot 511\) & +0.459 & \(+0.017\) & 2747 & 802 & 1397 \\
\hline 114 & 622559.1 & 20 & 95 & +11.032 & + 0.440 & \(+0.375\) & 2786 & 809 & 1405 \\
\hline 115 & \(65 \quad 3817.1\) & 14 & 88 & +11.076 & \(+0.430\) & \(+0.036\) & 2789 & 811 & 1407 \\
\hline 116 & 711917.5 & 17 & 60 & +11.299 & +0.410 . & \(+0.030\) & 2799 & 812 & 1411 \\
\hline 117 & \(473^{8} 54^{\circ} \mathrm{I}\) & 2 & 11 & + II•315 & + 0.486 & ... & 2798 & 813 & \(\ldots\) \\
\hline 118 & \(653318 \cdot 1\) & 10 & 25 & + II.866 & +0.414 & \(+0.035\) & 2850 & 833 & 1432 \\
\hline 119 & \(5^{51} 3645^{\circ} 9\) & 1 & 2 & + 11.921 & \(+0.455\) & \(\ldots\) & 2855 & 835 & ... \\
\hline 120 & 53 II 53.4 & 2 & 9 & + 11.958 & \(+0.448\) & ... & 2860 & 836 & \(\ldots\) \\
\hline 121 & \(531237^{\circ} \mathrm{I}\) & 1 & 3 & +12.053 & \(+0.446\) & & 2871 & 840 & \\
\hline 122 & \(70 \quad 221.0\) & 1 & 2 & +12.146 & \(+0.396\) & \(+0.094\) & 2880 & 842 & 1442 \\
\hline 123 & \(795810 \cdot 7\) & 6 & 34 & +12.293 & \(+0.370\) & \(+0.030\) & 2897 & \(\ldots\) & 1449 \\
\hline 124 & \(70 \quad 214.1 \dagger\) & \(\ldots\) & \(\ldots\) & +12.534 & +0.387 & \(+0.004\) & 2925 & & 1463 \\
\hline 125 & \(7 \mathrm{I} 2657 \cdot 6\) & 16 & 82 & +12.792 & +0.378 & + 0.268 & 2953 & 859 & 1470 \\
\hline 126 & \(\begin{array}{llll}58 & 54 & 39\end{array}\) & I & 3 & \(+12.804\) & +0.409 & \(-0.063\) & 2952 & 860 & ... \\
\hline 127 & \(605043 \cdot 6\) & 4 & 17 & +12.900 & - +0.401 & 0.000 & 2965 & 863 & 1474 \\
\hline 128 & \(77 \quad 2939.9\) & 2 & 48 & \(+12.957\) & \(+0.362\) & \(+0.095\) & 2970 & ... & 1476 \\
\hline 129 & \(834549 \cdot 7\) & I & 8 & +13.071 & \(+0.346\) & +0.070 & 2978 & \(\ldots\) & 1480 \\
\hline \(13^{\circ}\) & \(5^{6} \quad 18 \quad 42 \cdot 7\) & I & 4 & +13.144 & \(+0.407\) & +0.090 & 2984 & & ... \\
\hline 131 & \(57 \quad 717 \cdot 8\) & I & 4 & \(+13.281\) & \(+0.401\) & \(0 \cdot 000\) & 2999 & 867 & 1483 \\
\hline 1.32 & 612010.1 & 11 & 27 & +13.286 & + 0.390 & \(+0.065\) & 3000 & 868 & \(14^{8} 4\) \\
\hline \({ }^{1} 33\) & \(6115 \quad 24.8\) & 20 & 150 & +13.298 & + 0.390 & \(+0.230\) & 3002 & & 1486 \\
\hline 134 & \(59 \bigcirc 4^{2} \cdot 1\) & 3 & 14 & +13.395 & +0.393 & \(0 \cdot 000\) & 3016 & 871 & 1490 \\
\hline 135 & \(564025 \cdot 8\) & 3 & / 12 & +13.565 & +0.394 & 0.000 & 3033 & 874 & 1495 \\
\hline 136 & 80 II \(46 \cdot 6\) & I & 3 & +13.668 & \(+0.340\) & \(\ldots\) & 3053 & 876 & 1502 \\
\hline 137 & \(57 \quad 944^{\circ} 7\) & 1 & 4 & +13.734 & +0.387 & \(+0.100\) & 30.56 & 879 & 1505 \\
\hline 138 & \(4747 \cdot 2{ }^{\prime} 3\) & 2 & II & +13.780 & +0.413 & \(+0.270\) & 3059 & ... & ... \\
\hline 139 & \(614020.9 \dagger\) & \(\ldots\) & \(\ldots\) & +13.891 & +0.372 & \(+0.094\) & 3069 & \(\ldots\) & 1508 \\
\hline 140 & \(65 \quad 721.4\) & 12 & 46 & +13.957 & \(+0.362\) & \(+0.035\) & 3079 & 881 & 1511 \\
\hline
\end{tabular}

\footnotetext{
* Brought up to date from the Greenwich Catalogue of 1872.
1880.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & \begin{tabular}{l}
Mean Right \\
Ascension \\
Jan. I, 1892
\end{tabular} & Noutical Almanac Comparison Star & \[
\begin{gathered}
\text { No. of } \\
\text { Obser- } \\
\text { vations }
\end{gathered}
\] & \begin{tabular}{l}
Annual \\
Precession
\end{tabular} & Secular Variation & Proper Motion \\
\hline & & & h m s & & & \(s\) & 8 & \(s\) \\
\hline 141 & Piaz. VIII. 245 & 4.7 & 85939.554 & \(\kappa\) Cancri & 24 & \(+3.8360\) & \(-0.0304\) & \(-0.003\) \\
\hline 142 & 77 Cancri . - \(\xi\) & \(5 \cdot 2\) & \(\begin{array}{llll}9 & 3 & 8 \cdot 883\end{array}\) & 83 Cancrí & 16 & \(+3.45^{8} 4\) & -0.0159 & -0.006 \\
\hline 143 & 79 Cancri & \(6 \cdot 5\) & \(\begin{array}{llll}9 & 4 & 8 \cdot 535\end{array}\) & , \& \(\quad<\) Cancri & 32 & \(+3.455^{8}\) & -0.0159 & -0.003 \\
\hline 144 & 80 Cancri & \(6 \cdot 8\) & \(9 \quad 5 \quad 52 \cdot 969\) & \(\kappa\) Cancri & 20 & \(+3 \cdot 3804\) & -0.0134 & -0.004 \\
\hline 145 & 81 Cancri . \(\pi^{1}\) & \(7 \cdot 0\) & \(9 \quad 6 \quad 22 \cdot 884\) & 83 Cancri & 12 & \(+3 \cdot 3262\) & -0.0117 & \(-0.041\) \\
\hline 146 & Bradley 1299. & \(6 \cdot 5\) & \(9 \quad 727 \cdot 105\) & 83 Cancri \& \(\kappa\) Cancri & 38 & \(+3.4369\) & -0.0155 & -0.004 \\
\hline 147 & 19 Ursæ Majoris. & \(6 \cdot 3\) & 9836.411 & , . , & 28 & + 3.7110 & -0.0266 & -0.015 \\
\hline 148 & 82 Cancri . \(\pi^{2}\) & \(5 \cdot 6\) & \(9 \quad 916.034\) & 83 Cancri & 20 & \(+3.3220\) & -0.0117 & \(-0.003\) \\
\hline 149 & 23 Hydræ. & \(5 \cdot 4\) & 9 II 19*799 & " & 14 & \(+2.9798\) & -0.0024 & -0.004 \\
\hline 150 & 38 Lyncis . & \(3 \cdot 8\) & \(912 \quad 7 \cdot 366\) & \(\kappa\) Cancri & 12 & + 3.7527 & -0.0292 & -0.002 \\
\hline 151 & 40 Lyncis . - a & 3.4 & \(91428 \cdot 484\) & 83 Canc. \& \(\kappa\) Canc. & 18 & \(+3.6879\) & \(-0.0267\) & -0.018 \\
\hline 152 & Piazzi IX. 60. & \(6 \cdot 4\) & \(91716 \cdot 764\) & ,, ,, & 26 & \(+3.4909\) & -0.0185 & -0.014 \\
\hline I 53 & 1 Leonis . . \(\kappa\) & \(4 \cdot 6\) & 91821.828 & 83 Cancri & 16 & \(+3.5075\) & -0.0194 & -0.003 \\
\hline 154 & 7 Leonis Min. & 6.7 & 92411.550 & \(\epsilon\) Leonis & 10 & \(+3 \cdot 6423\) & \(-0.0262\) & -0.004 \\
\hline 155 & 4 Leonis . . \(\lambda\) & 4.4 & \(92533 \times 353\) & 83 Canc. \& oLconis & 26 & \(+3.4344\) & -0.0171 & -0.011 \\
\hline 156 & 9 Leonis Min. & \(6 \cdot 0\) & \(92652 \cdot 567\) & \(\epsilon\) Leonis & 12 & \(+3 \cdot 6959\) & -0.0295 & -0.001 \\
\hline 157 & 33 Hydræ & \(5 \cdot 7\) & \(929 \quad 9 \cdot 295\) & - Leonis & 12 & \(+2.9948\) & -0.0023 & \(+0.001\) \\
\hline \({ }^{1} 58\) & Piazzi IX. 124 & \(6 \cdot 5\) & \(93018 \cdot 263\) & " & 12 & \(+3 \cdot 5733\) & -0.0240 & -0.004 \\
\hline I 59 & 8 Lconis & 5*9 & 9315012 & \(\epsilon\) Leo., 83 Canc. \& o Leo. & 40 & \(+3 \cdot 3187\) & -0.0129 & -0.004 \\
\hline 160 & 9 Leonis & 6.5 & \(93138 \cdot 983\) & - Leonis & 12 & \(+3.4512\) & -0.0185 & -0.015 \\
\hline 161 & Piazzi IX. 135 & \(6 \cdot 5\) & \(93251 \times 029\) & - Leonis & 14 & \(+3.3765\) & -0.0153 & \(-0.004\) \\
\hline 162 & 35 Hydræ . - ८ & \(4 \cdot 2\) & \(93420 \cdot 382\) & " \({ }^{\circ}\) & 14 & \(+3.0636\) & -0.0040 & 0.000 \\
\hline 163 & 13 Leonis & \(6 \cdot 5\) & \(93525 \cdot 617\) & \(\mu\) Leonis \& \(\epsilon\) Leonis & 22 & \(+3.4641\) & -0.0195 & -0.005 \\
\hline 164 & \({ }^{1} 5\) Leonis . . \(f\) & 5*9 & 93713.330 & - Leonis & 24 & \(+3.5315\) & -0.0230 & -0.006 \\
\hline 165 & 16 Leonis . : \(\psi\) & \(5 \cdot 7\) & \(9375^{1 \cdot 028}\) & \(\epsilon\) Leonis & 8 & \(+3.2738\) & -0.0115 & \(0 \cdot 000\) \\
\hline 166 & Piazzi IX. 176 & Var. & 94144.936 & \(\pi\) Leonis & 2 & \(+3.2328\) & -0.0100 & -0.002 \\
\hline 167 & 4 Sextantis & 6.0 & \(94452 \cdot 920\) & \(\epsilon\) Leonis & 8 & \(+3 \cdot 1357\) & \(-0.0063\) & -0.011 \\
\hline 168 & 26 Leonis & \(7 \cdot 0\) & \(95^{2} 19.420\) & a Leonis & 10 & \(+3 \cdot 2718\) & -0.0121 & -0.005 \\
\hline 169 & 27 Leonis - . \(\nu\) & \(5 \cdot 3\) & \(95224 \cdot 836\) & \(\pi\) Leonis & 26 & \(+3.2352\) & -0.0105 & -0.001 \\
\hline 170 & Piazzi IX. 230 & \(5 \cdot 7\) & \(95^{6} 47 \cdot 645\) & , \& a Leonis & 32 & \(+3.3557\) & -0.0165 & -0.001 \\
\hline 171 & Piazzi IX. 240 & \(7 \cdot 0\) & \(95949 \cdot 348\) & \(a\) Luconis & 10 & \(+3 \cdot 2681\) & -0.0123 & -0.004 \\
\hline 172 & 21 Leonis Min. & \(4 \cdot 6\) & 10 103.518 & \(\pi\) Leonis & 14 & \(+3.5503\) & -0.0284 & \(+0.002\) \\
\hline 173 & 30 Leonis . . \(\eta\) & \(3 \cdot 6\) & \(\begin{array}{lll}10 & 1 & 26.590\end{array}\) & \(a\) Leonis & 10 & \(+3.2784\) & -0.0129 & -0.026 \\
\hline 174 & 33 Lconis & \(7 \cdot 0\) & \(10 \quad 452 \cdot 387\) & " & 8 & \(+3.2601\) & -0.0122 & -0.011 \\
\hline 175 & 34 Lconis & \(6 \cdot 7\) & 10549.730 & " & 22 & \(+3.2305\) & -0.0108 & \(+0.002\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distance Jan. 1, 1892} & \multirow[t]{2}{*}{No. of Stations vation} & \multirow[t]{2}{*}{Total No. of tions} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{Secular Variation} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A.C. & Gr. Cat. 1872 & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1880
\end{aligned}
\] \\
\hline & - , " & & & " & " & " & & & \\
\hline 141 & \(\begin{array}{llll}51 & 7 & 0.5\end{array}\) & 6 & 74 & \(+14.15{ }^{8}\) & \(+0.390\) & \(+0.050\) & 3097 & 883 & 1516 \\
\hline 142 & 67 31 \(5^{\text {I }}\) & 15 & 65 & + 14.373 & +0.345 & 0.000 & 3117 & 889 & I 524 \\
\hline 143 & \(673355 \cdot 4\) & 2 & 8 & \(+14.433\) & \(+0.344\) & 0.000 & 3123 & 891 & 1529 \\
\hline 144 & 713049.8 & 7 & 18 & + 14:539 & \(+0.333\) & \(+0.008\) & 3129 & 894 & 1532 \\
\hline 145 & \(7434 \quad 6 \cdot 1\) & 1 & 2 & + 14.569 & \(+0.327\) & -0.305 & 3132 & ... & I 533 \\
\hline 146 & \(681620 \cdot 6\) & 16 & 66 & \(+14.633\) & \(+0.336\) & \(+0.045\) & \(313^{8}\) & 895 & \({ }^{1} 536\) \\
\hline 147 & \(5455{ }^{1} 5.5\) & 2 & 54 & + 14.702 & \(+0.362\) & -0.070 & \(3{ }^{\text {I } 44}\) & 896 & I539 \\
\hline 148 & \(\begin{array}{lllllllll}74 & 3 & 3\end{array}\) & 6 & 45 & + 14.741 & \(+0.322\) & \(+0.035\) & 3147 & 897 & 1541 \\
\hline 149 & \(95 \quad 54 \quad 9 \cdot 5\) & 2 & 8 & \(+14.863\) & \(+0.285\) & -0.040 & 3160 & ... & 1543 \\
\hline 150 & \(5^{2} 4426 \cdot 2\) & 4 & 22 & \(+14.909\) & \(+0.360\) & \(+0.114\) & \(3^{162}\) & 900 & 1546 \\
\hline \({ }^{1} 5\) & \(\begin{array}{llll}55 & 9 & 3\end{array}\) & 6 & 25 & \(+15.046\) & \(+0.349\) & -0.040 & 3178 & 902 & 1550 \\
\hline 152 & 64 21 \(21.5{ }^{*}\) & \(\ldots\) & \(\ldots\) & + 15.207 & \(+0.325\) & 0.010 & 3194 & & 1554 \\
\hline \({ }^{1} 53\) & 63 21 II. 2 & \(3^{1}\) & 149 & + 15.269 & \(+0.325\) & \(+0.045\) & 3204 & 906 & 1555 \\
\hline \({ }^{1} 54\) & \(55 \quad 52\) 11•9 & 8 & 31 & + 15.595 & \(+0.327\) & \(+0.050\) & 3238 & 915 & 1567 \\
\hline \({ }^{1} 55\) & 663321.5 & 26 & 101 & + 15.669 & \(+0.306\) & \(+0.015\) & 3246 & 918 & 157 \\
\hline 156 & \(\begin{array}{llll}53 & 2 & 5^{\prime} \text { I }\end{array}\) & I & 2 & + 15.741 & \(+0.327\) & & \(3^{2} 5^{2}\) & ... & \\
\hline 157 & 952559.3 & 1 & 4 & + 15.864 & \(+0.260\) & \(+0.045\) & 3271 & ... & 158 I \\
\hline \({ }^{1} 58\) &  & I & 2 & + I5.925 & \(+0.310\) & \(+0.020\) & 3273 & ... & \\
\hline 159 & \(73 \quad 4{ }^{72 \cdot 7}\) & I I & 35 & + 15.966 & \(+0.286\) & \(0 \cdot 000\) & 3278 & 923 & 1583 \\
\hline 160 & \(645^{\circ} 4^{1} 3\) & 6 & 20 & + 15.996 & +0.297 & \(+0.039\) & 3285 & 924 & 1585 \\
\hline \({ }^{161}\) & \(691256 \cdot 1\) & 6 & 16 & \(+16.060\) & \(+0.288\) & \(-0.048\) & 3292 & 927 & 1589 \\
\hline 162 & \(\begin{array}{llll}90 & 39 & 9.4\end{array}\) & I & 3 & \(+16 \cdot 137\) & +0.258 & \(+0.045\) & 3303 & & 1592 \\
\hline 163 & \(633547 \cdot 3\) & I & 4 & \(+16 \cdot 194\) & \(+0.291\) & \(+0.100\) & 3309 & 929 & 1595 \\
\hline 164 & \(593^{1} 45^{\circ}\) & I & 3 & \(+16 \cdot 286\) & \(+0.293\) & \(+0.095\) & 3317 & 933 & 1599 \\
\hline 165 & \(75294 \cdot 7\) & 5 & 24 & \(+16 \cdot 318\) & \(+0.271\) & \(+0.064\) & 332 I & 936 & 1603 \\
\hline 166 & \(\begin{array}{llll}78 & 412 \cdot 9\end{array}\) & 13 & 31 & \(+16 \cdot 514\) & \(+0.260\) & \(+0.025\) & 3345 & & 1614 \\
\hline 167 & \(\begin{array}{llll}85 & 9 & 4 \cdot 5\end{array}\) & 4 & 12 & \(+16 \cdot 668\) & \(+0.247\) & \(+0.100\) & 3.359 & ... & ... \\
\hline 168 & \(741549 * 7\) & 2 & 12 & \(+17.021\) & \(+0.245\) & +0.010 & 3404 & ... & \\
\hline 169 & \(\begin{array}{llll}77 & 2 & 25 \cdot 7\end{array}\) & 21 & 86 & \(+17.025\) & \(+0.242\) & + 0.048 & 3406 & 948 & 1632 \\
\hline 170 & 67 31 \(48 \cdot 1\) & 5 & 12 & \(+17.224\) & \(+0.243\) & -0.070 & 3423 & 952 & 1638 \\
\hline 171 & \(734258 \cdot 0\) & 1 & 24 & \(+17.35^{8}\) & \(+0.23 \mathrm{I}\) & -0.100 & 3443 & & \\
\hline 172 & \(54 \quad 1345 \cdot 3\) & 15 & 90 & \(+17.412\) & \(+0.249\) & \(+0.021\) & 34.46 & 954 & 1646. \\
\hline 173 & 724239 & II & \(3^{8}\) & + 17.429 & \(+0.229\) & 0.000 & 3453 & 955 & 1648 \\
\hline 174 & \(734544^{\circ}\) I & 1 & 22 & + 17.575 & \(+0.221\) & \(0 \cdot 000\) & 3469 & 961 & ... \\
\hline 175 & \(\begin{array}{lll}76 & 6 & 43.4\end{array}\) & 15 & 79 & \(+17.616\) & \(+0.218\) & \(+0.060\) & 3475 & 962 & ... \\
\hline
\end{tabular}
* Brought up to date from the Greenwich Catalogue of 1880.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & \begin{tabular}{l}
Mean Right \\
Ascension \\
Jan. 1, 1892
\end{tabular} & Nautical Almanac Comparison Star & \[
\begin{aligned}
& \text { No. of } \\
& \text { Obser- } \\
& \text { rations }
\end{aligned}
\] & \begin{tabular}{l}
Annual \\
Precession
\end{tabular} & Sccular Variation & Proper Motion \\
\hline & & & \(h \quad m \quad s\) & & & s & 8 & \(s\) \\
\hline 176 & 22 Leonis Min. & \(6 \cdot 6\) & \(10 \quad 8 \quad 54^{\prime 1} 57\) & \(a\) Leonis & 20 & \(+3.4619\) & -0.0243 & -0.006 \\
\hline 177 & 36 Leouis . . \(\zeta\) & 3.0 & Io 10 \(40 \cdot 965\) & " & 18 & \(+3 \cdot 3453\) & -0.0174 & -0.002 \\
\hline 178 & 40 Leonis & \(5^{\circ}\) & Io 13 \(5^{1 \cdot 4} 45^{2}\) & " & 10 & \(+3.2902\) & -0.0145 & -0.018 \\
\hline 179 & 30 Leonis Min. & \(5 \cdot 4\) & 10 19 43.376 & \(\rho\) Leonis & 10 & \(+3 \cdot 4597\) & \(-0.0264\) & -0.008 \\
\hline 180 & 45 Leonis & \(5 \cdot 9\) & \(102156 \cdot 812\) & , & 10 & \(+3 \cdot 1735\) & \(-0.0083\) & \(+0.005\) \\
\hline \({ }^{1} 81\) & Piazzi X. 83 & \(6 \cdot 0\) & \(\begin{array}{lll}10 & 23 & 2 \cdot 100\end{array}\) & \(\mu\) Hydræ & 12 & \(+3.2186\) & -0.0110 & -0.009 \\
\hline 182 & 33 Leonis Min. & 5*7 & \(10 \quad 2543 \cdot 522\) & \(\rho\) Leonis & 14 & \(+3.4188\) & -0.0.248 & + 0.004 \\
\hline 183 & 46 Leonis . . \(i\) & 5*7 & \(102625 \cdot 796\) & \(\mu\) Hydræ & 12 & \(+3.2118\) & -0.0108 & \(-0.007\) \\
\hline 184 & 49 Leonis & \(6 \cdot 0\) & 102922.220 & \(\rho\) Leonis & 28 & \(+3^{15} 5^{61}\) & -0.0075 & -0.002 \\
\hline 185 & \(3^{6}\) Leonis Min. & \(6 \cdot 0\) & \(103144 \cdot 690\) & ", & 22 & \(+3.4195\) & \(-0.0262\) & -0.002 \\
\hline 186 & 37 Leonis Min. & 4•8 & Io \(3^{2} 3^{8 \cdot} 5^{66}\) & \(\rho\) Leonis & 10 & \(+3 \cdot 3^{899}\) & -0.024I & \(0 \cdot 000\) \\
\hline 187 & 50 Leonis . & \(6 \cdot 5\) & I0 \(33 \quad 6 \cdot 929\) & \(\mu\) Hydræ & 8 & + \(3 \cdot 2209\) & -0.0118 & \(+0.002\) \\
\hline 188 & 39 Leonis Min. & \(6 \cdot 5\) & 10 \(3422 \cdot 308\) & ,, \& \(\rho\) Leonis & 22 & \(+3 \cdot 3330\) & \(-0.0200\) & -0.003 \\
\hline 189 & Piazzi X. \(3^{1}\). & \(6 \cdot 5\) & 10 \(3^{6} \quad 8 \cdot 25^{\circ}\) & \(\rho\) Leonis & 10 & \(+3.3745\) & \(-0.0236\) & -0.002 \\
\hline 190 & Piazzi X. \({ }^{\text {3 }} 39\). & \(5^{1} 1\) & \(103732 \cdot 597\) & \(l\) Leonis & 22 & \(+3 \cdot 2797\) & \(-0.0164\) & -0.006 \\
\hline 191 & \(3^{6}\) Sextantis & \(6 \cdot 5\) & \(103935 \cdot 528\) & \(l\) Leonis & 22 & \(+3.0971\) & \(-0.003^{8}\) & -0.003 \\
\hline 192 & 37 Sextantis & \(6 \cdot 2\) & \(104028 \cdot 262\) & , & 12 & \(+3 \cdot 1280\) & -0.00.58 & -0.001 \\
\hline 193 & 55 Leouis . & \(6 \cdot 0\) & \(10508 \cdot 926\) & " & 4 & \(+3.0818\) & -0.0025 & \(+0.006\) \\
\hline 194 & 50 Leonis Min. & \(6 \cdot 0\) & \(105042 \cdot 692\) & " & 22 & \(+3.2674\) & \(-0.0176\) & -0.007 \\
\hline 195 & 49 Ursæ Majoris & \(6 \cdot 0\) & \(105447 \cdot 214\) & ,, \& \(\chi\) Leonis & 28 & \(+3 \cdot 385^{2}\) & -0.0305 & -0.009 \\
\hline 196 & 60 Leonis . . b & \(4 \times 5\) & \(105^{6} 33 \cdot 8 \mathrm{II}\) & \(l\) Leonis \& \(\chi\) Leonis & 54 & +3.2111 & -0.0135 & -0.003 \\
\hline 197 & 67 Leonis . & . \(\cdot 6\) & \(\begin{array}{llll}\text { II } & 3 & \text { I. } 45^{6}\end{array}\) & \(\delta\) Leonis \& \(\chi\) Leonis & 22 & \(+3 \cdot 2277\) & -0.0163 & \(+0.002\) \\
\hline 198 & Piazzi X. \(25{ }^{2}\). & \(6 \cdot 0\) & 11322.743 & & 34 & \(+3.3180\) & \(-c .0265\) & -0.002 \\
\hline 199 & 72 Leonis & 4.9 & \(\begin{array}{llll}\text { II } & 9 & 27 \cdot 684\end{array}\) & \(\delta\) Leonis & 20 & \(+3.2009\) & -0.0148 & \(+0.002\) \\
\hline 200 & Piazzi XI. 22. & \(6 \cdot 0\) & II Io 19*456 & " & 8 & \(+3.1413\) & \(-0.0082\) & \(+0.003\) \\
\hline 201 & 53 Ursæ Maj. . \(\xi\) & \(3 \cdot 8\) & 1 II 1225.457 & \(\delta\) Leonis & 46 & \(+3 \cdot 2457\) & -0.0212 & -0.022 \\
\hline 202 & 54 Ursæ Maj. . \(\nu\) & \(3 \cdot 8\) & \(11123^{8 \cdot} 720\) & " & 18 & \(+3 \cdot 2554\) & \(-0.0226\) & -0.004 \\
\hline 203 & 88 Leonis & \(6 \cdot 0\) & \(\begin{array}{lllllllllllll}\text { II } & 26 & 10 \cdot 314\end{array}\) & \(\tau\) Leonis & 12 & \(+3 \cdot 1252\) & \(-0.0082\) & -0.026 \\
\hline 204 & Piazzi XI, ili & \(5 \cdot 8\) & 113036 & , & 10 & \(+3 \cdot 1649\) & -0.0168 & \(-0.003\) \\
\hline 205 & 59 Ursæ Majoris & \(5 \cdot 5\) & \(11325^{\circ} 227\) & " & 12 & \(+3.2279\) & -0.03I5 & \(-0.020\) \\
\hline 206 & Piazzi XI. 146 & \(6 \cdot 5\) & II \(37.54^{\circ}\) I \(3^{6}\) & \(\tau\) Leonis & 12 & \(+3 \cdot 1898\) & \(-0.0286\) & 0.000 \\
\hline 207 & Piazzi XI. 164 & \(6 \cdot 0\) & II \(44 \quad 5 \cdot 067\) & \(\pi\) Virginis & 12 & \(+3 \cdot 1388\) & -0.0212 & - 0.008 \\
\hline 208 & Groom. 1830 & \(6 \cdot 4\) & \(114645 \cdot 314\) & , & 6 & \(+3 \cdot 1340\) & -0.0235 & + 0.344 \\
\hline 209 & 6 Virginis . \(\mathrm{A}^{2}\) & \(6 \cdot 0\) & II \(4930 \cdot 649\) & & 6 & \(+3.0823\) & \(-0.0035\) & -0.004 \\
\hline 210 & 95 Leonis . . o & \(5 \% 4\) & II \(50 \quad 7 \cdot 28 \dot{4}\) & " & 12 & \(+3.0894\) & \(-0.0075\) & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distance Jan. I, 1892} & \multirow[t]{2}{*}{No. of Stations vation} & \multirow[t]{2}{*}{Total No. of Observa tions} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{Secular Variation} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B,A.C. & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1872
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1880
\end{aligned}
\] \\
\hline & - " & & & " & " & " & & & \\
\hline 176 & \(575946 \cdot 6\) & 1 & 4 & \(+17 \cdot 742\) & \(+0.228\) & \(+0.050\) & 3490 & 965 & 1662 \\
\hline 177 & \(66 \quad 2 \quad 40 \cdot 3\) & 13 & 86 & + 17.815 & \(+0.216\) & -0.047 & 3508 & 969 & 1666 \\
\hline 178 & \(695^{8} 52 \cdot 0\) & 4 & 18 & +17.940 & \(+0.207\) & \(+0.201\) & 3522 & & 1672 \\
\hline 179 & \(553915{ }^{\circ}\) & 14 & 69 & \(+18 \cdot 164\) & \(+0.206\) & \(+0.067\) & 3560 & 984 & \\
\hline 180 & 79 41 12.8 & 5 & 20 & \(+18.245\) & +0.184 & -0.030 & 3575 & & 1691 \\
\hline 18 I & \(75 \quad 6 \quad 16 \cdot 8\) & 14 & 51 & \(+18.285\) & \(+0.185\) & \(+0.012\) & 3579 & 989 & \\
\hline 182 & \(57 \quad 3 \quad 59 \cdot 5\) & 6 & 24 & +18.380 & +0.191 & +0.015 & 3602 & 995 & 1701 \\
\hline 183 & \(75183^{1} 3\) & 8 & 20 & \(+18.405\) & +0.178 & -0.025 & 3606 & 996 & 1703 \\
\hline 184 & 804731.4 & 2 & 8 & +18.505 & + 0.169 & \(+0.050\) & 3622 & ... & \\
\hline 185 & \(552142 \cdot 7\) & 2 & 12 & \(+18.584\) & +0.179 & \(+0.060\) & 3633 & \(\ldots\) & \\
\hline 186 & \(572747 \cdot 3\) & 21 & 142 & \(+18.614\) & \(+0.176\) & \(+0.015\) & 3640 & 1003 & 1713 \\
\hline 187 & \(\begin{array}{lllllll}73 & 18 & 39.4\end{array}\) & 1 & 3 & +18.629 & \(+0.166\) & \(+0.067\) & 3643 & 1004 & 1714 \\
\hline 188 & \(615443 \cdot 7\) & I & 2 & +18.669 & + +0.169 & 0.000 & 3650 & 1007 & 1717 \\
\hline 189 & \(574416 \cdot 4\) & 1 & 4 & +18.725 & +0.168 & 0.000 & 3661 & 1009 & 1720 \\
\hline 190 & \(661447 \cdot 6\) & II & 41 & \(+18 \cdot 769\) & \(+0.160\) & \(+0.044\) & 3671 & 1012 & 1724 \\
\hline 191 & \(865639 \cdot 3\) & 2 & 12 & \(+18.831\) & \(+0.147\) & \(+0.055\) & 3684 & & 1727 \\
\hline 192 & \(83 \quad 3 \begin{aligned} & 28 \cdot 2\end{aligned}\) & 2 & 12 & +18.858 & \(+0.147\) & \(+0.025\) & 3690 & \(\ldots\) & 1729 \\
\hline 193 & 8841 I \(5^{\circ} 2\) & 9 & 24 & +19.129 & \(+0.127\) & \(+0.025\) & 3749 & ... & 1748 \\
\hline 194 & \(635523 \cdot 7\) & 4 & 16 & +19.143 & \(+0.134\) & \(+0.010\) & 3751 & & \\
\hline 195 & \(5012 \quad 28 \cdot 3\) & 1 & 5 & +19.246 & \(+0.130\) & \(+0.020\) & 3765 & & ... \\
\hline 196 & \(691427 \cdot 0\) & 5 & 23 & \(+19.290\) & \(+0.120\) & -0.040 & 3776 & 1031 & 1762 \\
\hline 197 & \(644525^{1}\) & 12 & 47 & +19.436 & \(+0.107\) & -0.012 & 3809 & 1039 & 1780 \\
\hline 198 & \(53622 \cdot 0\) & 1 & 4 & \(+19.444\) & + 0.110 & \(+0.138\) & \(3^{811}\) & 1040 & ... \\
\hline 199 & 66 I8 \(57 \cdot 5\) & 5 & 27 & +19.567 & + 0.094 & \(+0.005\) & 3842 & ... & 1794 \\
\hline 200 & 763353.9 & I & 4 & \(+19.58\) & \(+0.090\) & + 0.089 & 3845 & 1050 & \\
\hline 201 & \(575147 \cdot 8\) & 22 & 182 & \(+19.622\) & \(+0.089\) & \(+0.592\) & 3851 & 1053 & 1800 \\
\hline 202 & \(\begin{array}{llllllllllll}56 & 18 & 59 \cdot 4\end{array}\) & 3 & 13 & +19.626 & + 0.089 & -0.052 & 3852 & 1054 & 1802 \\
\hline 203 & \(\begin{array}{lll}75 & 2 & 0.2\end{array}\) & 1 & 4 & +19.835 & \(+0.058\) & \(+0.155\) & 3919 & 1058 & 1831 \\
\hline 204 & 613719.2 & 14 & 120 & +19.888 & \(+0.050\) & \(+0.012\) & 3937 & 1074 & 1840 \\
\hline 205 & \(454^{6} 34^{\circ} \mathrm{I}\) & I & 4 & +19.910 & \(+0.048\) & \(+0.055\) & 3952 & & 1843 \\
\hline 206 & 474044.7 & 3 & 13 & \(+19.960\) & \(+0.036\) & +0.100 & 3973 & 1084 & 1853 \\
\hline 207 & \(\begin{array}{llll}54 & 28 & 6 \cdot 6\end{array}\) & 1 & 5 & +20.004 & \(+0.023\) & \(+0.030\) & 3998 & ... & \\
\hline 208 & \(\begin{array}{llll}51 & 30 & 23 \cdot 6\end{array}\) & 9 & 42 & +20.019 & + 0.018 & \(+5.770\) & 4010 & 1094 & 1870 \\
\hline 209 & 805722.4 & 3 & 10 & \(+20.032\) & \(+0.012\) & \(+0.071\) & 4027 & ... & ... \\
\hline 210 & \(73 \quad 45 \quad 9 \cdot 3\) & 2 & 8 & +20.034 & \(+0.011\) & \(+0.025\) & 4031 & 1099 & 1874 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Slar & Mag. & Mean Right Ascension Jan. 1, 1892 & Nautical Almanac Comparison Star & No. of Observations & \begin{tabular}{l}
Annual \\
Precession
\end{tabular} & Secular Variation & Proper Motion \\
\hline & & & \(\hbar \mathrm{m}\) & & & \(s\) & \(s\) & \(\delta\) \\
\hline 211 & \({ }^{2}\) Comæ & \(6 \cdot 0\) & .11 \(5^{8} 44 \cdot 777\) & \(\pi\) Virginis & 38 & \(+3.0756\) & -0.0103 & +0.001 \\
\hline 212 & 9 Virginis . o & 4.3 & II 5942.490 & , & 40 & \(+3.0729\) & -0.0030 & -0.010 \\
\hline 213 & 10 Virginis & \(6 \cdot 1\) & \(\begin{array}{llll}12 & 4 & 9 \cdot 249\end{array}\) & \(\eta\) Virginis & 8 & \(+3.0715\) & \(+0.0008\) & \(+0.003\) \\
\hline 214 & Piazzi XII. 3 - & 5•7 & 12516.904 & \(\pi\) Virginis & 20 & \(+3.0563\) & -0.0134 & \\
\hline 215 & 6 Comæ & 5•1 & \(121031 \cdot 058\) & \(\eta\) Virginis & 22 & \(+3.0556\) & -0.0057 & -0.005 \\
\hline 216 & \({ }_{11}\) Comæ & \(4 \cdot 9\) & 121515.547 & \(\eta\) Virginis & 32 & +3.0430 & -0.0069 & -0.009 \\
\hline 217 & Piazzi XII. 75 & \(6 \cdot 2\) & \(121949^{\circ} 135\) & ,, \& \(\gamma\) Virg. & 14 & +3.0199 & -0.0101 & \(+0.004\) \\
\hline 218 & 32 Virginis . \(d^{2}\) & \(6 \cdot 5\) & \(1240 \quad 9 \cdot 747\) & \(\delta\) Virginis & 14 & \(+3.0388\) & 0.0000 & -0.003 \\
\hline 219 & 34 Virginis & 5•9 & \(124^{1} 47.509\) & , & 12 & + 3.0186 & -0.0021 & +0.006 \\
\hline 220 & 30 Comæ & \(6 \cdot 0\) & \(1244 \quad 1 \cdot 712\) & " & 22 & \(+2.9361\) & -0.0099 & -0.009 \\
\hline 221 & 31 Comæ & 5.0 & \(124626 \cdot 331\) & \(\delta\) Virginis & 24 & + 2.9288 & -0.0097 & \(0 \cdot 000\) \\
\hline 222 & 35 Comæ & 5•1 & \(12475^{8 \cdot 759}\) & , & 14 & + 2.9613 & -0.0063 & \(0 \cdot 000\) \\
\hline 223 & 41 Virginis & \(6 \cdot 4\) & \(1248 \quad 24 \cdot 588\) & , & 24 & + \(3 \cdot 00 \% 9\) & -0.0019 & \(+0.005\) \\
\hline 2.24 & Bradley 1724. & \(3^{\circ} \mathrm{O}\) & \(125057 \cdot 25^{6}\) & , \(\quad \& \epsilon\) Virg. & 32 & \(+2 \cdot 8348\) & -0.0151 & -0.024 \\
\hline 225 & 36 Comæ & \(5^{\circ} \mathrm{O}\) & \(125335 * 019\) & \(\epsilon\) Virginis & 10 & \(+2.9720\) & -0.0040 & -0.002 \\
\hline 226 & 3) Comæ & \(5^{\circ} 1\) & \(1255 \quad 6 \cdot 456\) & \(\epsilon\) Virginis & 20 & \(+2 \cdot 8785\) & -0.0105 & \(+0.003\) \\
\hline 227 & 48 Virginis & \(6 \cdot 6\) & \(125^{8} \quad 20 \cdot 525\) & , \& \(a\) Can. Ven. & 14 & \(+3.0907\) & \(+0.0066\) & 0.000 \\
\hline 228 & 14 Canum Ven. & 5.0 & \(13 \bigcirc 41.480\) & \(\epsilon\) Virginis & 16 & \(+2.8149\) & -0.0124 & -0.002 \\
\hline 229 & 39 Comæ & 6.1 & 13 I 5.424 & ,, \& \(a\) Can. Ven. & 16 & \(+2.9322\) & -0.0051 & -0.003 \\
\hline 230 & Bradley 1745 . & \(6 \cdot 0\) & \(13 \quad 243.474\) & & 36 & \(+2 \cdot 8794\) & -0.008I & -0.005 \\
\hline 231 & PiazziXII. 283 & \(6 \cdot 7\) & \(13 \quad 4 \quad 29 \cdot 169\) & \(a\) Canum Ven. & 32 & \(+2.9561\) & -0.0029 & 0.011 \\
\hline 232 & 17 Canum Ven. & \(6 \cdot 1\) & \(\begin{array}{llll}13 & 5 & 5.686\end{array}\) & , \(\quad \& \in\) Virg. & 26 & \(+2 \cdot 7684\) & -0.0132 & \(-0.006\) \\
\hline 233 & Piazzi XIII. 27 & 5.0 & 138849.169 & " & 26 & \(+2 \cdot 7322\) & -0.0135 & -0.002 \\
\hline 234 & 59 Virginis . e & \(5^{\circ} \mathrm{I}\) & 131124.869 & \(\epsilon\) Virginis & 8 & \(+3 \cdot 0004\) & +0.0009 & -0.023 \\
\hline 235 & 74 Virginis . \(l^{2}\) & \(4 * 9\) & \(13 \quad 26 \quad 20 \cdot 905\) & \(\zeta\) Virg. and a Virg. & 16 & \(+3 \cdot 1217\) & +0.0092 & -0.009 \\
\hline 236 & 3 Bootis & \(5 \cdot 8\) & \(134142 \cdot 482\) & \(\tau\) Virginis & 10 & \(+2 \cdot 7896\) & \(-0.0038\) & \(+0.002\) \\
\hline 237 & 5 Bootis . . v & \(4^{11}\) & 134416.088 & , & 10 & \(+2 \cdot 9004\) & +0.0001 & -0.005 \\
\hline 238 & 10 Bootis & 5*3 & \(135335 \cdot 264\) & , & 10 & \(+2.8128\) & -0.0015 & -0.003 \\
\hline 239 & Piaz.XIII. \(3^{16}\) & \(6 \cdot 5\) & \(14 \quad 3 \quad 36 \cdot 806\) & " & 8 & \(+2.4010\) & -0.0062 & \(+0.006\) \\
\hline 240 & Bradley 1848. & \(6 \cdot 0\) & \(14 \quad 10 \quad 59 \cdot 685\) & \(f\) Bootis & \(\delta\) & \(+2.8177\) & \(+0.0005\) & \(+0.009\) \\
\hline 241 & Bootis . . A & \(4 \cdot 8\) & \(141326 \cdot 0 \% 6\) & \(f\) Bootis & 10 & \(+2.5384\) & \(-0.0037\) & \(+0.010\) \\
\hline 242 & Groom. 2100 & \(6 \cdot 0\) & 141521.909 & " & 10 & \(+2 \cdot 4634\) & -0.0041 & \(+0.010\) \\
\hline 243 & Groom. 2154 . & \(5 \cdot 5\) & \(14 \begin{array}{lll}14613.987\end{array}\) & \(\psi\) Bootis & 10 & \(+2 \cdot 3868\) & -0.0009 & -0.012 \\
\hline 244 & 37 Bootis . - \(\xi\) & \(4 \cdot 6\) & \(144^{6} 24.611\) & , & 16 & \(+2.7574\) & \(+0.0022\) & \(+0.017\) \\
\hline 245 & Piaz.XIV. 226 & \(5 \cdot 8\) & \(14 \begin{array}{lll}142 & 9.587\end{array}\) & " & 24 & \(+2.7967\) & \(+0.0031\) & +0.004 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Mean North Polar Distance Jan. 1, 1892} & \multirow[t]{2}{*}{No. of
Stations of Observation} & \multirow[t]{2}{*}{Total No. of tions} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{Secular Variation} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A.C. & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1872
\end{aligned}
\] & \[
\begin{gathered}
\text { Gr. Cat. } \\
1880
\end{gathered}
\] \\
\hline & - , " & & & " & " & " & & & \\
\hline 211 & \(675623 \cdot 1\) & 2 & 10 & \(+20 \cdot 0.53\) & -0.006 & -0.010 & 4066 & ... & ... \\
\hline 212 & \(8040 \quad 2 \cdot 5\) & 6 & 26 & \(+20.053\) & -0.008 & 0.000 & 4072 & 1110 & 1888 \\
\hline 213 & \(872945 \cdot 3\) & 8 & 22 & +20.050 & -0.017 & \(+0.190\) & 4094 & 1112 & 1892 \\
\hline 214 & \(\begin{array}{llll}62 & 7 & 1.2\end{array}\) & 1 & 4 & \(+20.047\) & -0.019 & -0.025 & 4100 & 1116 & 1896 \\
\hline 215 & 742959.9 & 10 & 37 & \(+20.032\) & -0.029 & \(+0.067\) & 4125 & 1128 & 1908 \\
\hline 216 & \(713{ }^{7} 37 \times 4\) & 4 & 14 & \(+20 \cdot 008\) & \(-0.038\) & -0.110 & \(45^{6}\) & 1137 & 1929 \\
\hline 217 & \(65 \quad 28 \quad 27 \cdot 6\) & 2 & 8 & +19.978 & -0.047 & \(+0.036\) & 4184 & 1141 & 1937 \\
\hline 218 & 81 \(4412 \cdot 6\) & 2 & 7 & +19.746 & - 0.086 & \(+0.100\) & 4286 & .. & \\
\hline 219 & \begin{tabular}{ll}
77 & 27 \\
\hline 17
\end{tabular} & 4 & 16 & +19.720 & -0.088 & +0.150 & 4292 & 1176 & 1994 \\
\hline 220 & 615132.9 & 2 & 8 & +19.684 & -0.090 & -0.060 & 4304 & 1182 & 2003 \\
\hline 221 & \(615217 \cdot 3\) & 5 & 18 & \(+19.643\) & -0.094 & 0.000 & 4315 & 1186 & 2005 \\
\hline 222 & 68 10 4.2 & 10 & 96 & +19.615 & -0.098 & +0.02I & 4328 & 1188 & 2008 \\
\hline 223 & \(76593^{8 \cdot 7}\) & 1 & 4 & +19.607 & -0.100 & -0.004 & 4329 & 1189 & 2009 \\
\hline 224 & \(\begin{array}{llll}51 & 6 & 9.3\end{array}\) & 1 & 4 & +19.559 & \(0 \cdot 100\) & -0.055 & 4345 & 1195 & 2019 \\
\hline 225 & \(72 \times 30 \cdot 6\) & 4 & 16 & +19.507 & -0.109 & -0.005 & 4351 & 1198 & 2024 \\
\hline 226 & \(5^{8} 375^{6 \cdot 5}\) & 5 & 22 & +19.476 & \(-0.108\) & \(+0.005\) & 4360 & 1201 & 2029 \\
\hline 227 & \(93455^{*} 4^{*}\) & ... & \(\ldots\) & +19.407 & -0.122 & +0.018 & 4373 & 1206 & 2035 \\
\hline 228 & \(53 \quad 37 \quad 23 \cdot 9\) & 5 & 21 & +19.354 & -0.116 & +0.009 & \(43^{8} 4\) & 1207 & ... \\
\hline 229 & \(\begin{array}{llll}68 & 16 & 1 \cdot 7\end{array}\) & 3 & 14 & +19.345 & -0.121 & \(+0.020\) & 4387 & 1208 & 2039 \\
\hline 230 & 615157 & 1 & 4 & +19.306 & -0.122 & \(+0.110\) & 4393 & ... & ... \\
\hline 231 & \(723434^{\circ} \mathrm{O}\) & 1 & 4 & \(+19.264\) & -0.128 & \(+0.100\) & 4403 & 1214 & \\
\hline 232 & \(505538 \cdot 5\) & I & 4 & +19.249 & -0.121 & -0.013 & 4415 & 1217 & 2048 \\
\hline 233 & \(491632 \cdot 6\) & I & 4 & \(+19^{\prime} 155\) & -0.126 & \(+0.005\) & 4433 & ... & 2055 \\
\hline 234 & \(80 \quad 04 \mathrm{I} \cdot 6\) & 1 & 5 & +19.087 & -0.142 & -0.160 & 4440 & & 2060 \\
\hline 235 & 954153.5 & I & 6 & \(+18 \cdot 646\) & \(-0.176\) & \(+0.035\) & 4516 & 1239 & 2097 \\
\hline 236 & \(6345 \quad 20 \cdot 9\) & 2 & 8 & \(+18.110\) & \(-0.182\) & \(+0.065\) & 4594 & 1260 & 2143 \\
\hline 237 & 733958 & 2 & 4 & \(+18.013\) & -0.194 & -0.042 & 4615 & 1265 & 2150 \\
\hline 238 & \(674636 \cdot 7\) & I & 2 & \(+17.640\) & -0.203 & \(+0.038\) & 4664 & 1279 & 2176 \\
\hline 237 & \(45 \quad 37 \quad 53.5\) & 1 & 6 & \(+17.206\) & \(-0.187\) & -0.013 & 4699 & 1288 & ... \\
\hline 240 & \(7035 \quad 7 \cdot 4\) & 1 & 5 & \(+16.865\) & \(-0.230\) & \(+0.060\) & 4731 & ... & ... \\
\hline 241 & \(535931 \cdot 4\) & 1 & 2 & \(+16.749\) & -0.211 & \(-0.050\) & 4747 & 1309 & 2224 \\
\hline 242 & \(504232 \cdot 8\) & I & 2 & \(+16.656\) & -0.207 & ... & 4758 & ... & ... \\
\hline 243 & \(\begin{array}{lllllllllllllll}52 & 17\end{array}\) & 1 & 4 & \(+15.005\) & -0.237 & -0.112 & 4906 & 1343 & 2302 \\
\hline 244 & \(\begin{array}{lll}70 & 27 & 2.4\end{array}\) & 3 & 10 & +14.995 & -0. 0273 & \(+0.150\) & 4905 & 1344 & 2303 \\
\hline 245 & \(731036 \cdot 0\) & 3 & 10 & \(+14.656\) & \(-0.285\) & -0.024 & 4933 & \({ }^{1} 351\) & 2314 \\
\hline
\end{tabular}
* Brought up to date from the Greenwich Catalogue of 1880.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & Name of Star & Mag. & Mean Right Ascension Jan. 1, 1892 & Nautical Almanac Comparison Star & \[
\begin{aligned}
& \text { No. of } \\
& \text { Obser- } \\
& \text { Oations }
\end{aligned}
\] & Annual Precession & Secular Variation & Proper Motion \\
\hline & & & \(h \mathrm{~m}\) s & & & \(s\) & \(s\) & \(s\) \\
\hline 246 & * B.F. 2051 & \(5 \cdot 0\) & 14 55 17. 386 & \(\psi\) Bootis & 10 & \(+2.2938\) & -0.0002 & -0.001 \\
\hline 247 & 40 Bootis & \(5 \cdot 4\) & \(14555^{28} \cdot 561\) & , & 10 & \(+2.3036\) & -0.0002 & \\
\hline 248 & 41 Bootis & 4*9 & \(1457 \quad 22 \cdot 719\) & & 22 & \(+2.6282\) & +0.0014 & \(+0.003\) \\
\hline 249 & 42 Bootis . & \(3 \cdot 6\) & \(1457 \quad 52 \cdot 731\) & " & 10 & \(+2.2638\) & 0.0000 & -0.001 \\
\hline
\end{tabular}
* Baily's Edition of Flamsteed's Catalogue.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{\begin{tabular}{l}
Mean North \\
Polar Distanco \\
Jan. 1, 1892
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { No. of } \\
\text { Stations } \\
\text { of Obser }
\end{gathered}
\]
ration} & \multirow[t]{2}{*}{Total
No. of
Obserra Observa
tions} & \multirow[b]{2}{*}{Annual Precession} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Secular } \\
& \text { Variation }
\end{aligned}
\]} & \multirow[b]{2}{*}{Proper Motion} & \multicolumn{3}{|c|}{Number in} \\
\hline & & & & & & & B.A.C. & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1872
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gr. Cat. } \\
& 1880
\end{aligned}
\] \\
\hline & - " & & & " & " & " & & & \\
\hline 246 & \(495535^{\circ}\) & 1 & 4 & \(+14.468\) & \(-0.238\) & ... & 4942 & ... & ... \\
\hline 247 & \(5018 \quad 25^{\circ}\) 1 & I & 44 & + 14.457 & -0.239 & -0.005 & 4943 & 1353 & 2320 \\
\hline 248 & 643353.5 & 1 & 4 & \(+14.341\) & -0.274 & \(+0.113\) & 4953 & 1355 & 2325 \\
\hline 249 & \(491059^{\prime} \mathrm{I}\) & 4 & 30 & \(+14.310\) & -0.237 & \(0 \cdot 000\) & 4958 & 1356 & 2327 \\
\hline
\end{tabular}

RETURN TO the circulation desk of any University of California Library or to the NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station University of California Richmond, CA 94804-4698

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
- 2-month loans may be renewed by calling (510) 642-6753
- 1-year loans may be recharged by bringing books to NRLF
- Renewals and recharges may be made 4 days prior to due date

DUE AS STAMPED BELOW
AUG 212004


DD20 6M 9-03

LD 21-95m-11, \(50(2877 \mathrm{~s} 16) 476\)

庋 YF 02513

\title{
CATALOGUE OF STARS \\ FOR THE EPOCII
}

JAN. 1, 1892

\section*{FROM OBSERVATIONS}

BY THE

GREAT TRIGONOMETRICAL SURVEY OF INDIA.

COMPILED UNDER THE DIRECTION OF
COLONEL H. R. THUILLIER, C.I.E., R.E., SURVEYOR GENERAL OF INDIA.

BY
COLONEL G. STRAHAN, R.E., DEPUTY SURVEYOR GENERAL, in Charge of the trigonometrical branci of the survey of india.


PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL BRANCH, SURVEY OF INDIA. B. V. HUGIES.
1893.

\section*{Price Two Rupees.}```

